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S U M M A R Y
Present thermochemical convection models of planetary evolution often assume a purely
viscous or viscoplastic rheology. Ignoring elasticity in the cold, outer boundary layer is,
however, questionable since elastic effects may play an important role there and affect surface
topography as well as the stress distribution within the stiff cold lithosphere. Here we present
a modelling study focused on the combined effects of Maxwell viscoelastic rheology and a
free surface in the stagnant lid planetary convection. We implemented viscoelastic rheology
in the StagYY code using a tracer-based stress advection scheme that suppresses subgrid
oscillations. We apply this code to perform thermal convection models of the cooling planetary
mantles and we demonstrate that while the global characteristics of the mantle flow do not
change significantly when including viscoelasticity, the stress state of the cold lithosphere may
be substantially different. Transient cooling of an initially thin upper thermal boundary layer
results in a complex layered stress structure due to the memory effects of viscoelastic rheology.
The stress state of the lid may thus contain a record of the planetary thermal evolution.

Key words: Numerical solutions; Elasticity and anelasticity; Dynamics of lithosphere and
mantle; Lithospheric flexure; Rheology: crust and lithosphere.

1 I N T RO D U C T I O N

Mantle dynamics of terrestrial planets is traditionally modelled us-
ing viscous or viscoplastic rheology with viscosity strongly depen-
dent on temperature and pressure. High viscosity contrasts typical
for present day temperatures result in stagnant lid convection (Solo-
matov 1995), which can explain the tectonic style of most terrestrial
planets. Surface topography and gravitational field are the primary
constraints on the internal structure and dynamics of terrestrial
planets and both are strongly affected by the properties of the lid.
A commonly used assumption that this lid is purely viscous or
viscoplastic is, however, questionable. There are multiple lines of
evidence that planetary lithospheres show elastic behaviour on geo-
logical time scales. For example, the height and width of a forebulge
associated with subduction and the response of a sedimentary basin
to surface loading can be successfully explained by the deflection of
a thin elastic plate (Turcotte & Schubert 2002). Numerous studies
have thus addressed the effects of elasticity on the topography and
geoid induced by internal dynamics of a planet.

Zhong (2002) calculated the topography and geoid of a 3-D spher-
ical viscoelastic shell with static internal loading, where this loading
was derived from the distribution of thermal buoyancy computed
with a viscous flow solver. A different approach for combining
the calculation of small deformations of an elastic or viscoelastic
spherical shell with a viscous mantle convection code is presented
by Golle et al. (2012), who used normal tractions from the mantle
convection simulation at a given depth as the boundary condition

for the deformation of a thin elastic shell. A more advanced ap-
proach involves the fully viscoelastic treatment of mantle convec-
tion within the whole domain including the stagnant lid. Such an
approach allows the inclusion of lateral variations in the thickness
of the lithosphere and accounts for the possible feedback between
viscoelastic features in the lithosphere and sublithospheric internal
dynamics.

Convection of a viscoelastic material on a planetary mantle scale
was first addressed by Ivins et al. (1982). Later, Harder (1991)
performed numerical experiments with a Maxwell medium with
constant viscosity, the main focus being on stationary solutions of
thermal convection in a box with free slip boundaries. More elab-
orate models that could include pressure and temperature induced
lateral variations of viscosity, nonlinear stress-dependent rheologies
and variable thickness of the lithosphere emerged about a decade
later. Muhlhaus & Regenauer-Lieb (2005) found no significant devi-
ations of statistical steady states in convection models with nonlin-
ear rheology; only the transient phase was influenced by considering
viscoelasticity. Beuchert & Podladchikov (2010) demonstrated how
elasticity broadens the region of effective stress associated with a
cold temperature anomaly prescribed within the lithosphere. They
also studied statistical steady state convection. All of the above
studies assumed a free-slip surface. Thielmann et al. (2015) ad-
dressed the effects of viscoelasticity and a free surface on stagnant
lid convection with temperature dependent viscosity. Their target
parameters were mean stress in the lithosphere and thickness of
the stress boundary layer. While the significance of a free surface
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was clearly demonstrated, the effect of viscoelasticity seemed to be
negligible for planetary parameters, as the resulting dependencies
of target parameters were rather flat for Deborah numbers up to 1.
The above mentioned works focus on the effect of viscoelasticity
on the horizontally averaged stress profile or on global character-
istics of convection such as the bottom and top Nusselt numbers.
Little attention is paid to the effect of stress memory, initial thermal
conditions and topography.

The main focus of this study is to provide a detailed analysis
of the effects of viscoelasticity on surface topography and stress
evolution within the parameter range characteristic of planetary
mantles. We will introduce a new viscoelastic flow solver based on
the formulation by Moresi et al. (2002), implemented in StagYY
(Tackley 2008). With this tool we will first employ a simple compo-
sitional model of a cylinder (representing plume head) rising below
a stiff lithosphere to evaluate the response of a viscoelastic lid to
convective loading. This part is an extension of the viscous model
introduced by Crameri et al. (2012) and it demonstrates what are the
combined effects of elasticity and a free surface on the developed
surface topography. We will compare the free surface topography
of the viscoelastic models to the topography calculated using the
traditional instantaneous viscous flow (IVF) approach (e.g. Kiefer
et al. 1996), in which dynamic topography is assumed to be pro-
portional to the normal component of surface traction. After ex-
amining the effects of elasticity on lithospheric deformation in this
basic model we will move to a more elaborate description of the
cooling of a planetary mantle. We will construct a model of thermal
convection in a planetary mantle with a free surface and evaluate
the effects of viscoelastic rheology on lithospheric stresses. We will
focus on temporal changes in the stress distribution during plane-
tary cooling and we will demonstrate how the stress memory of the
lithosphere affects the formation of stress distribution in planetary
mantles.

2 G OV E R N I N G E Q UAT I O N S
A N D N U M E R I C A L M E T H O D S

We employ two types of models. First, we perform models of purely
composition driven convection with a simple density load (labelled
as RC). A compositionally buoyant cylinder represents a rising
plume head and we evaluate the effects of elasticity and surface
boundary condition on the topography. In the second group of nu-
merical experiments (labelled TC) we use viscoelastic thermal con-
vection models and concentrate on the stress evolution within the
lithosphere.

2.1 Governing equations

We assume an incompressible fluid with infinite Prandtl number
with following equations describing conservation of mass and mo-
mentum:

∇ · v = 0, (1)

− ∇ p + ∇ · τ + ρg = 0. (2)

Here v is the velocity, ρ density, p pressure, g gravitational accel-
eration and τ deviatoric stress. In case of the compositional models
(RC) we further require the conservation of composition:

∂ck

∂t
+ v · ∇ck = 0, (3)

where ck is the concentration (either 0 or 1) of kth material with the
density ρk.

In the thermal convection models (TC), eqs (1) and (2) are sup-
plemented by conservation of energy in the Boussinesq approxima-
tion:

∂T

∂t
= κ�T − v · ∇T, (4)

and a linearized equation of state:

ρ = ρ0(1 − α(T − T0)), (5)

where T is the temperature, κ is the diffusivity, α is the thermal
expansivity and ρ0 is the density at reference temperature T0. Both
thermal expansivity and diffusivity are assumed constant.

2.2 Maxwell viscoelastic rheology

The rheological description of a Maxwell viscoelastic material is
given by

D = Dviscous + Delastic = 1

2η(p0, T )
τ + 1

2G

Dτ

Dt
, (6)

where D is the deviatoric part of the strain rate tensor, η(p0, T) is
the viscosity dependent on temperature and hydrostatic pressure p0,
and G is the shear modulus. D

Dt denotes an objective tensor rate
(e.g. Liu & Sampaio 2014). Here we adopt the Jaumann rate that
is traditionally used in viscoelastic convection (see appendix A in
Thielmann et al. 2015; Muhlhaus & Regenauer-Lieb 2005, for a
discussion of objective rates in geodynamical context):

Dτ

Dt
:= ∂τ

∂t
+ v · ∇τ + (τW − Wτ ), (7)

where W is the antisymmetric part of the velocity gradient (spin
tensor)

W = 1

2

(∇v − (∇v)T
)
. (8)

The corotational term (τW − Wτ ) accounts for rotation of a volume
element within the flow. Inserting (7) into (6) gives the following
form of the constitutive equation:

2ηD = τ + η

G

(
∂τ

∂t
+ v · ∇τ + τW − Wτ

)
. (9)

We consider an Arrhenius viscosity that depends exponentially on
temperature and hydrostatic pressure p0:

η(p0, T ) = η0 · exp

(
Eact + p0Vact

RT

)
, (10)

where η0 is set such that η is the reference viscosity at T = 1600 K
and p0 = 0 Pa, Eact is the activation energy, Vact is the activation
volume and R is the gas constant. In viscous models that will be used
as a reference to evaluate elasticity effects, G → ∞ in eq. (9) and
viscosity follows the same pressure and temperature dependency
(eq. 10).

Following Moresi et al. (2002) we discretize eq. (9) with a mixed
Euler first-order accurate scheme (implicit with respect to D, τ

and viscosity, explicit with respect to advectional and corotational
terms) and obtain the equation for stress in the nth time step:

τ n = 2ZηD
n + (1 − Z)τ̃ n−1, (11)

τ̃ n−1 := τ n−1 − �t (v · ∇τ + τW − Wτ )n−1 , (12)
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Z = �t

�t + η/G
. (13)

The implementation of viscoelasticity into a viscous flow code
thus consists of replacing viscosity by numerical viscosity ηnum :=
Zη and evaluating an extra term ∇ · [(1 − Z)τ̃ n−1], which accounts
for the effect of stress that did not fully relax within one time step.
The importance of elastic effects is measured by viscoelasticity
parameter Z that is closely related to the Maxwell relaxation time
tM = η/G (Z → 1 when η/G � �t). In non-dimensional studies,
the role of tM is played by the Deborah number, De := ηκG−1D−2,
with D denoting the domain’s depth.

Let us consider a constant value of the shear modulus,
G = 7 × 1010 Pa (representative of the Earth’s uppermost mantle).
Then, for viscosity (in the mantle) equal to 1022 Pa s the relaxation
time η/G is ∼4.5 kyr. With a typical computational time step of
100 kyr more than 95 per cent of stress is relaxed within one time
step and the material behaves effectively as a viscous fluid. However,
if the viscosity (in the lithosphere) is η = 1027 Pa s, the relaxation
time is ∼450 Myr and for the same computational time step only
0.02 per cent of stress is relaxed within one time step. Consequently,
the material remembers its stress state from thousands of previous
time steps.

In order to evaluate the differences between different viscous and
viscoelastic models we introduce a scalar measure of stress, the
second invariant of the stress tensor, which we will refer to as the
effective stress:

τeff :=
√

τ 2
xx + τ 2

zz

2
+ τ 2

xz, (14)

with τ xx, τ zz and τ xz denoting the Cartesian components of τ .
Time derivative of τ in eq. (9) implies the need for an initial

condition on the deviatoric stress. In all viscoelastic models we
assume τ (t = 0) equal to zero.

2.3 Numerical implementation

Numerical solution of the governing equations is performed us-
ing the code StagYY (Tackley 2008), which has been extended to
include viscoelastic rheology by following the method described
in Moresi et al. (2002) and Gerya & Yuen (2007). The method
introduced by Moresi et al. (2002) and Moresi et al. (2003) was
originally designed for finite elements. Here we apply it to a finite
volume discretization (some aspects of stress evaluation accuracy
in context of finite volume discretizations of elastic plate bending
problems are discussed in Vaz et al. 2009). Benchmarks used to test
the viscoelastic part of the code are presented in Appendix A. For
technical details regarding the implementation we refer the reader to
Gerya & Yuen (2007), deviations from their approach are described
below.

We implemented both a grid-based and tracer-based advection of
stress. Using particles for advecting a quantity is optimal when the
quantity remains constant on each particle throughout the simula-
tion. If so, only interpolation from tracers to grid is needed. This
is not the case with the stress tensor in viscoelastic media: the first
term on the right hand side of eq. (11) is a contribution that is
computed each time step on the grid and is interpolated from grid
to tracers. The convenience of tracer-based advection thus depends
on the relative importance of the terms on the right hand side of
eq. (11). It performs slightly better than the grid-based donor cell
method when simulating the recovery of the original shape of an
elastic slab (see Appendix A2), as the stresses only gradually build
up in the slab and do not change much over computational time

steps. The opposite is true when simulating the flow described in
Appendix A1, especially for advecting stresses in regions of high
vorticity on a sparse mesh. While the donor cell method leads to a
satisfactory fit to the reference stationary flow described in Harder
(1991), with tracer-based advection over a thousand tracers per cell
are required to reach comparable solution quality. In the thermal
convection simulations reported below we use tracers to advect
stress tensor components, but we obtained qualitatively the same
results with the donor cell advection scheme as well.

Our implementation of the tracer-based variant differs from
Gerya & Yuen (2007) in the way the second term on the right
hand side of eq. (11) is treated. In thermal convection simulations,
subgrid oscillations of stress can occur in advection dominated re-
gions. When the stress change is computed in a volume integrated
sense (i.e. on the nodes of the mesh) and subsequently interpolated
to tracers, then two tracers with a different stress history that at
certain moment are very close to each other can unphysically retain
a mutual stress jump even when entrained to an effectively viscous
part of the domain (see Appendix B and Fig. B1 for more details).
The problem is similar to the problem of subgrid oscillations of
temperature when this quantity is carried on tracers but diffusion is
computed on the mesh.

In order to reduce these oscillations Gerya & Yuen (2007) use
subgrid diffusion, controlled by additional numerical parameters
(see their eq. 24 and the preceding paragraph). Here we introduce a
novel approach that performs the relaxation procedure, that is, mul-
tiplication by factor (1 − Z) in eq. (11), directly on tracers and not
on the grid. Only then is the second term in eq. (11) interpolated to
the respective positions on the staggered grid. In effectively viscous
regions this procedure leads to individually zeroing out the stress
from the previous time step on each tracer, regardless of the value of
stress on neighbouring tracers. As a result, the stress field is smooth
and determined solely by 2ZηD

n in these regions. No additional
(numerical) diffusion parameters are needed in our simulations.

Another important issue that determines numerical stability is the
choice of time step. In the time-averaging approach of Moresi et al.
(2003) the elastic time step �t in eqs (12) and (13) can in general
be chosen independently on the advectional time step controlled
by CFL condition. If one sets a lower bound on �t it means that
material with relaxation time smaller than this limit value �tmin

behaves effectively as viscous medium (cf. eq. 11). This can help
to stabilize the numerical simulations in certain cases (see section
‘Elastic Timestep’ in Moresi et al. (2002) for details). Here we
however did not need to apply a lower bound �tmin and use only
one time step both in the constitutive equation and for advecting
the tracers (see the discussion in Appendix A1). This time step is
dictated by the CFL condition with Courant number equal to 0.5.

The tracers are advected using the fourth-order spatially accurate
Runge–Kutta method. We use linear tracer to node interpolation
for the diagonal components of the deviatoric stress (located at
cell centres) and cell averaging interpolation for the off-diagonal
components (located at grid vertices, resp. edge centres in 3-D).

To conclude this section, a note should be made of a positive side
effect that comes with implementing viscoelasticity. The numeri-
cal viscosity, which numerically plays the role of physical viscosity
when solving the Stokes equation, has much smaller spatial con-
trasts than the physical one (see Beuchert & Podladchikov 2010,
for details). The pre-factor Z in eq. (13) is from the interval (0,
1), and decreases with increasing viscosity for a given time step.
Thus Z

.= 0.95 for mantle material with viscosity η = 1022 Pa s
and shear modulus G = 7 × 1010 Pa if the computational time
step is 100 kyr, while Z

.= 0.0002 for lithosphere with η = 1027

Pa s and the same shear modulus, that is, reducing the viscosity
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Figure 1. Model setup used in Section 3. Viscosity of the lid is varied. Simulations with viscoelastic rheology have constant shear modulus GL = 7 ×
1010 Pa. For free surface simulations sticky air layer of thickness 100 km and viscosity 1018 Pa s is employed.

Figure 2. Topographic response to a rising cylinder, different colours stand for different values of ηL in Pa s. Solid lines show the evolution of maximum
topography when viscoelastic rheology is employed, dashed lines are for viscous rheology. Red dashed curve is the response to Case 2 in Crameri et al. (2012).
Green lines represent the overlapping, traction derived topographies.

contrast by four orders of magnitude. This improves the convergence
of multigrid iterations when solving the resulting system of linear
equations.

3 R I S I N G C Y L I N D E R ( RC M O D E L S )

3.1 Model setup

We use the same model setup as Crameri et al. (2012), de-
signed to mimic the interaction of the stiff lithosphere with a
rising plume head. Our model domain is an isothermal 2-D box
(2800 km × 700 km) with a no-slip bottom boundary and imper-
meable free-slip side boundaries (Fig. 1). Viscous mantle (600 km
deep) with a viscosity of 1021 Pa s and density of 3300 kg m−3 is
overlain by a 100 km thick, neutrally buoyant, viscoelastic litho-
sphere. We test three values of lithospheric viscosity: 1023, 1025 and
1027 Pa s. The rising plume head is modelled as a less dense cylinder
initially located in the middle of the mantle layer. The diameter of
the cylinder is 100 km and it is characterized by a density of 3200 kg
m−3 and a relatively low viscosity of 1020 Pa s. Viscoelastic models
have shear modulus GL = 7 × 1010 Pa in the viscoelastic lithosphere
and their mantle is kept viscous (which is numerically achieved by
using a high value of the shear modulus in the mantle, GM = 1020

Pa). We use a regular grid resolution with 256 × 1024 points and
100 particle tracers per cell.

Our models have either a free surface implemented using
the sticky-air approach (Matsumoto & Tomoda 1983; Schmeling

et al. 2008) or an impermeable free-slip surface. Sticky air is mod-
elled as a 100 km thick layer of a very weak material (ηA = 1018 Pa s)
with negligible density (ρA = 10−3 kg m−3). Surface topography in
the free surface models is calculated by tracking the interface be-
tween the lithosphere and sticky-air. In free-slip models the surface
topography is assumed to be proportional to the normal component
of surface traction (e.g. Kiefer et al. 1996)—we denote this here
as the IVF response. For each lithospheric viscosity we run four
models—with purely viscous or viscoelastic rheology and with a
free surface or a free-slip surface. We use very fine time steps here,
20× smaller than the values dictated by the CFL stability condition,
in order to resolve the initial evolution of topography.

3.2 Results: topography above a rising cylinder

First, let us discuss the topography developing above a cylinder
rising through the mantle towards the stiff lithosphere (Fig. 1). We
use this simple model to demonstrate the basic features of stress
and topography development in a stiff layer loaded by a viscous
upwelling. We vary the viscosity of the stiff lithosphere (1023, 1025

and 1027 Pa s) and for each viscosity we perform both the IVF
model (with impermeable free-slip surface) and the free surface
model, and compare the resulting topographies.

The buoyant cylinder needs about 10 Myr to rise from its ini-
tial position towards the base of the lithosphere. During this time
the traction acting at the bottom of the lid due to the load steadily
increases. Fig. 2 depicts the maximum topography reached in the
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Figure 3. Temporal evolution of vertical deviatoric stress τ zz in models with a free surface and ηL equal to 1027 Pa s. Left panel shows viscous model, right
panel is for viscoelastic model. Stress is plotted as a function of depth along a vertical line located above the centre of the rising cylinder. Colour represents
time in Myr.

middle of the box above the rising cylinder as a function of time.
Solid lines show the viscoelastic models while dashed lines are
for corresponding viscous models (GL → ∞). The IVF topogra-
phies are insensitive to lithospheric viscosity and almost identical
for viscous and viscoelastic models. Viscoelastic material transfers
stresses to the top free slip boundary in a similar way to viscous
material when flexure is not allowed by the top boundary condition.
The IVF topographies gradually increase as the load becomes closer
to the surface and reach their maximum of about 800 m when the
cylinder reaches the base of the lithosphere. Free-surface topogra-
phies (red, blue and black lines), on the other hand, do depend on
the lithospheric viscosity and vary between the viscous and vis-
coelastic models. In case of the lowest lid viscosity (1023 Pa s, red
line) the Maxwell relaxation time is ∼45 kyr and viscoelasticity
thus plays little role. At the beginning both topographies quickly
increase (time is displayed on logarithmic scale) and after few hun-
dreds of kyr they get close to the IVF value, which they follow
afterwards because the Stokes time scale is larger than the isostatic
relaxation time of the lid (see Crameri et al. 2012, for details).
Higher viscosity lids (1025 and 1027 Pa s; blue and black lines)
already cause visible differences between viscous and viscoelastic
models in topography development. Topographies in viscous mod-
els are significantly reduced with respect to the IVF response due to
the resistance of a stiff lid to bending. Viscoelastic material on the
other hand responds with elastic deformation as well and developed
topography is higher (closer to IVF values). The large difference be-
tween the IVF and free-surface topography of purely viscous models
demonstrates a drawback of the IVF approach: it yields topogra-
phies that are almost independent of the lid’s viscosity, whereas
free surface topographies differ significantly for lithospheric vis-
cosities which are commonly used as cut-off values in geodynamical
models.

The evolution of topography formed by the viscoelastic lids is
determined by their respective Maxwell relaxation times (∼45 kyr
for the solid red line, ∼4.5 Myr for the solid blue line, ∼450 Myr

for the solid black line), with the exception of the initial rise, which
is controlled by viscosity of the mantle. The viscous deformation
of the mantle delays the (otherwise instantaneous) elastic flexure
of the lid (cca 160 m for the initial position of the load). Weak
lithosphere (solid red line) is characterized by a short Maxwell
relaxation time, smaller than both the Stokes time scale of the rising
cylinder and the isostatic relaxation time of a viscous lithosphere
(for the given viscosity). The evolution of topography in viscoelastic
cases with higher lithospheric viscosity (solid blue and solid black
lines) is identical as long as the dominant deformation mechanism
is the purely elastic one (i.e. mechanism insensitive to ηL). The lines
separate as soon as viscoelastic relaxation starts to be significant
for ηL = 1025 Pa s, slowly increasing the observed topography by
shifting from the elastic to the viscous limit. With ηL = 1027 Pa s
the Maxwell relaxation time is much larger than the duration of the
simulation, and the solid black line thus represents a purely elastic
response (ηL → ∞). The effect of elastic filtering, described in
Golle et al. (2012), addresses the difference between such response
and a traction derived topography.

Fig. 3 demonstrates stress evolution within the lithosphere with a
free surface. It shows the vertical deviatoric stress τ zz as a function
of depth plotted above the centre of the rising cylinder in a model
with the strongest lithosphere (ηL = 1027 Pa s). Colour represents
time: black and dark colours are for the beginning of the calculation,
while orange and yellow are for the time when the cylinder reaches
the bottom of the lid. The left panel shows the viscous model,
whereas the right panel is for the viscoelastic model. The initial
stress in the viscous model is large (∼200 MPa) and the pattern cor-
responds to bending. The amplitude decreases as the cylinder rises
and topography grows—the elevated surface of the lid counteracts
the effect of the upward push of the cylinder.

In the viscoelastic lid the stresses are significantly smaller and
they simply increase as the topography increases, because the
stresses are fully determined by the total strain in the effectively
elastic lid.
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Table 1. Parameters used in the convection calculations.

Parameter Symbol Model Eel Model Mel Units

Mantle depth D 2890 1666 km
Gravitational acceleration g 9.81 3.7 m s−2

Reference density ρ0 3300 3300 kg m−3

Temperature drop �T 2500 1500 K
Reference viscosity ηref 1023 9.316 × 1019 Pa s
Upper viscosity cut-off ηmax 1028 1028 Pa s
Thermal diffusivity κ 7.6 × 10−7 7.6 × 10−7 m2 s−1

Thermal expansivity α 3 × 10−5 3 × 10−5 K−1

Activation energy Eact 240 346 kJ mol−1

Activation volume Vact 8.9 × 10−7 2 × 10−7 m3 mol
Surface temperature Tsurf 289 230 K
Shear modulusa G 7 × 1010 7 × 1010 Pa
a Models Evis and Mvis are obtained by setting G → ∞.

4 T H E R M A L C O N V E C T I O N
( T C M O D E L S )

4.1 Model setup

After examining the basic characteristics of a viscoelastic response
in free-slip and free-surface models, we now proceed towards the
convection models, in which the flow is driven by thermal buoyancy
and the viscosity is controlled by the temperature distribution and
the depth.

We concentrate on the effects of viscoelasticity on the transient
behaviour of the stiff lid and demonstrate how viscoelasticity affects
stress evolution in the lithosphere during its cooling and thickening.
To that end we perform models of two planetary bodies with differ-
ent reference viscosities and thus different vigour of convection in
the transient phase. The first one is an Earth-sized body (E-models)
with a relatively high ηref and model parameters based on Crameri
& Tackley (2014). The other one is a Mars-sized body (M-models)
with lower ηref and parameters taken from Golle et al. (2012). For
each planet we test two scenarios – one with an initially thin litho-
sphere (controlled by the initial thermal boundary layer thickness
dTB = 30 km) and the other one with an initially 300 km thick
lithosphere.

We assume basally heated convection with constant temperature
top and bottom boundaries, while the sides are insulating with zero
normal heat flux. The initial temperature distribution follows the
relation:

T (z) = T0 + (Tsurf − T0) exp

( −z

dTB

)

+ (TCMB − T0) exp

(
z − D

dTB

)
, (15)

where T0 = 1900 K is the temperature at the mid-depth, Tsurf and
TCMB are surface and core-mantle boundary temperatures, dTB is
the initial thickness of the thermal boundary layer, D is the mantle
thickness and z is the depth. Random temperature perturbations
with amplitude 20 K are used to initiate convection. The model
parameters are summarized in Table 1.

Each convection simulation starts with a transient stage in which
the sublithospheric flow evolves and the cold, stiff lithosphere gradu-
ally changes its thickness. Then, a statistically steady state is reached
and the lithospheric thickness remains constant. The temperature T0

in the mid-mantle is initially set to 1900 K. For E-models this is
less than the statistically steady state mid-mantle temperature, thus
the central part of the model heats up during transient phase and
the vigour of convection increases. For the Mars-like parameter

set, on the other hand, 1900 K represents an overheated mantle,
mainly because of the smaller temperature drop between the core-
mantle boundary and surface. Due to the lower reference viscosity,
a vigorous, downwelling dominated convection initially develops in
the model and is gradually quelled as the mid-mantle temperature
decreases down to cca. 1700 K.

The model domain is a 2-D Cartesian box with aspect ratio 1 and a
mantle depth of 2890 km for E-models and 1666 km for M-models.
Impermeable free slip boundaries are assumed at the bottom and
sides of the box. The top boundary is either assumed to be imper-
meable free slip, or similarly to the RC models, a free surface using
the sticky-air approach. Following Crameri & Tackley (2014) we
use a 150 km thick sticky-air layer with viscosity ηA = 1021 Pa s
(given our upper viscosity cut-off, this choice provides a reasonable
balance between obtained accuracy and the length of computational
time step necessary to avoid the ‘drunken seaman’ instability de-
scribed by Kaus et al. 2010; Duretz et al. 2011). The mesh resolution
is 256 × 256 nodes.

4.2 Results: free-slip surface

First let us discuss the Earth-size models with an impermeable free-
slip surface and initially thin lithosphere. Fig. 4 shows a snapshot
of viscosity in the whole model domain (left column), effective
stress in the upper half of the model domain (middle column) and
vertical deviatoric stress (right column), all taken after 4.6 Gyr.
The upper row is for a purely viscous model Evis, while bottom
row is for a viscoelastic one Eel. Below the lithosphere the flow
pattern is almost identical for both rheologies (see Fig. 5) and we
can thus compare responses to almost identical loading. The viscous
model results in a relatively simple smooth stress distribution within
the stiff lithosphere that reflects the distribution of upwelling and
downwelling features.

The viscoelastic model, on the other hand, shows a rather com-
plex layered stress pattern in the lower part of the lithosphere in the
middle between the two downwellings. The depth of the first ‘layer’
indicates the thickness to which the lithosphere cooled conductively
with no accompanying deformation. The stress layers themselves
formed during the thickening period and reflect the lateral move-
ment of upwellings and downwellings during the history of the
thickening lithosphere. In general, when viscoelastic lithosphere
grows, the accretionary edge records the stresses caused by the up-
welling and downwelling features active at the time of the accretion.
These stresses are remembered, but they are also gradually altered
as they relax and as new downwellings pull and new plumes push
throughout the entire thickness of the lid. The thickness and lateral
extent of the stress layers is determined by the spatial stability of the
dynamical features relative to the characteristic time of the cooling.

In case of the Mars-like body more vigorous convection devel-
ops during the transition phase. The shorter wavelength structure of
the downwellings in the sublithospheric mantle is also reflected in
the stress pattern in the lithosphere, in both viscous and viscoelas-
tic models. Fig. 6(a) shows the vertical stress component τ zz at
two snapshots taken during transient cooling and thickening of the
lithosphere at 1 Gyr and at 2 Gyr. Clearly, a complex layered litho-
spheric stress pattern due to memory effects in a viscoelastic model
(as described above) is much more pronounced here. This is due to
the relative instability and characteristic wavelength of the down-
wellings. Additionally, the region of smooth stresses is significantly
reduced when compared to the less vigorous Earth-sized model as
the downwellings quickly develop in the early stages of the model
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Figure 4. Model E with aspect ratio 1, T0 = 1900 K, dTB = 30 km and a free slip upper boundary after approximately 4.6 Gyr. Top row shows the viscosity,
effective stress and vertical deviatoric stress τ zz of model Evis, bottom row shows the simulation with vicoelastic rheology (Eel). Stresses are shown in upper
part of the domain only, depth is in km.

Figure 5. Top and bottom Nusselt numbers and mean velocities in models Evis and Eel with aspect ratio 1, T0 = 1900 K, dTB = 30 km and a free-slip upper
boundary.

evolution. When a steady state is reached and lithospheric thick-
ness does not increase further, frozen stress structures relax and
within several Gyr this shallow, layered stress structure resulting
from memory effects of viscoelastic rheology is no longer present.
Viscoelastic models then have comparable stress magnitude and
pattern as viscous ones. The time that the structure needs to dis-
appear is related to the Maxwell relaxation time of the lithosphere
(4.5 Gyr for the upper viscosity cut-off 1028 Pa s).

So far we have discussed the results of the models with an initially
thin lithosphere. If we instead initially prescribe a thick lithosphere
(dTB = 300 km) we observe none of the above described effects on
stress development and the behaviour of viscoelastic models is the
same as that of viscous models (see Fig. 6b).

4.3 Results: free surface

In the previous paragraph we described the results of the models
with a free-slip surface. Now let us focus on the models with a free
surface. Based on the results of our numerical experiments with a

rising cylinder, we may expect much stronger effects of elasticity,
as the lithospheric flexure can now fully develop.

Fig. 7 shows the stress evolution in the smaller Mars-like mantle
models Mvis and Mel – with initially thin lithosphere dTB = 30 km.
In a purely viscous model (left column) the stress pattern in the
lithosphere reflects its bending due to the pull of the sublithospheric
downwellings (no plumes are initially present due to the fact that the
mantle is overheated). The wavelength of the lithospheric undula-
tions is controlled by the temporary distribution of the downwellings
and by the actual thickness of the lithosphere. As the lithosphere
cools and thickens, the wavelength of the undulations generally in-
creases. In a viscoelastic case (right column) the stress pattern is
again much more complex. Stresses obtained during the bending of
initially thin plate (easy to bend and thus reaching relatively large
strains) are remembered (‘frozen’) until cca. 4 Gyr and during cool-
ing and thickening of the lid its deeper parts adopt and remember
the stresses due to later bending. The amplitude of the stress in the
deeper layers is smaller than the amplitude of the initial surface
stress layer due to the fact that the colder and thicker lid becomes
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Figure 6. Normal stress component τ zz in model Mvis (left column) and model Mel (right column) after cca. 1 Gyr (top row) and 2 Gyr (second row). Both
models have aspect ratio 1, T0 = 1900 K and a free-slip surface. Depths only down to 700 km are shown. Stress scale is clipped for better visibility of the
memory effect. (a) Initially thin lithosphere is prescribed, with dTB = 30 km. (b) The case with initially thick lithosphere, dTB = 300 km.

increasingly difficult to bend. These large stresses are preserved on
time scales comparable to the surface value of tM (4.5 Gyr). After
3 Gyr mantle has cooled down enough and plumes start to develop.
Large stresses associated with strong plumes pushing at the base of
the lithosphere then overprint the stress pattern associated with the
cooling and early bending. Note that the lithospheres of the models
with a free surface exhibit bending stresses that are order of magni-
tude larger than in the previously discussed simulations with a free
slip upper boundary.

Fig. 8 shows vertical profiles of effective stress (horizontally av-
eraged) in both models Mvis and Mel, evenly sampled over the first
3 Gyr. It demonstrates thickening of the viscous lithosphere with a
typical bending/unbending pattern (left panel) while the viscoelas-
tic lithosphere with generally lower stresses shows preservation of
the bending pattern of the initially thin lithosphere (right panel).
Note that the stresses associated with bending of the 30 km thick
lithosphere are in tens of MPa, while we observed stresses of only
a few MPa in the free-slip surface simulations. In the viscoelastic
model, the stresses below the 30 km depth are similar as in the
free-slip case.

After examining the effects of lithospheric thickening, let us
now look at the models in which the lithosphere is initially thick

(dTB = 300 km). Such models display no differences between vis-
cous and viscoelastic rheology, in case that a free slip condition is
prescribed at the top (Section 4.2 above). In free surface models
we do observe differences, but of a different nature than the stress
memory effect described above.

In these models, the lithosphere is thinning and the layered stress
structures thus could not develop here. The stress patterns are domi-
nated by the bending stresses, and these are significantly smaller for
the viscoelastic simulations (see the last paragraph of Section 3.2
and Fig. 3). We demonstrate this in Fig. 9, which shows the time
evolution of the effective stress in E-models within a 3 Gyr long
time window taken 12 Gyr after the initiation of the simulation.

Further evolution of the models is characterized by similar stress
profiles as depicted in Fig. 9—the stress reduction is a general
characteristic of statistically steady state viscoelastic convection
with a free surface (i.e. regardless of the value of dTB), as long as
the lithosphere is bending and unbending in the reached statistically
steady state.

For the M-models the statistically steady states are almost station-
ary, with a stable plume in the centre and downwellings at the sides.
Due to this steady loading the lithosphere is permanently bent, and
not flexing up and down as in the previous case. It then reaches the
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Figure 7. Vertical component of deviatoric stress τ zz in model M with aspect ratio 1, T0 = 1900 K, dTB = 30 km and a free surface. Stress scale is clipped for
better visibility of the memory effect. Negative depths (in km) show the sticky air layer.

viscous limit and the effects of viscoelasticity disappear (cf. the last
snapshot in Fig. 7).

Table 2 summarizes how the viscoelastic effects depend on the
initial and boundary conditions. Both effects are stronger when the
vigour of convection is higher.

4.4 Robustness of the results

The results presented above were obtained in a 2-D Cartesian ge-
ometry with aspect ratio 1. In order to estimate the effects of model
geometry we repeated some of the simulations also in aspect ra-
tio 4, 2-D spherical annulus (Hernlund & Tackley 2008), and 3-D
Cartesian box. Based on these tests we can conclude that the stress
memory and the stress reduction effects discussed in previous sec-

tions are robust, though the stress amplitudes differ in different
geometries (cf. Fig. 10).

In agreement with studies by Thielmann et al. (2015) and
Muhlhaus & Regenauer-Lieb (2005) the sublithospheric mantle
convection was hardly affected by viscoelasticity or a free surface in
our simulations. This does not imply that the internal dynamics were
equivalent for each pair (viscous vs. viscoelastic) of the simulations
we performed. Due to the chaotic nature of thermal convection we
observed that some models get locked into a quasi-stable statisti-
cally steady state for up to billions of years (e.g. having more, or
distorted, convection cells when compared to the stable statistically
steady state). To our experience the likelihood of such behaviour
was not affected by the inclusion of viscoelasticity and we avoided
such cases in the presented work.
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Figure 8. Temporal evolution of effective stress τ eff in models Mvis and Mel with the same parameters as in Fig. 7. We show horizontally averaged radial
profiles that are evenly sampled in time. Colour represents the time in Gyr, only the transient behaviour is shown.

Figure 9. Temporal scatter of effective stress τ eff in models Evis and Eel with aspect ratio 1, T0 = 1900 K, dTB = 300 km and a free surface. We show 100
horizontally averaged depth profiles that are evenly sampled in time. Colour represents the time in Gyr.

5 D I S C U S S I O N

We present here the results of numerical experiments focused on
the effects of viscoelasticity on the stress and surface topography
development of internally loaded lithosphere. First, we use the com-
positional model of a cylinder rising below the stiff lithosphere in-
troduced by Crameri et al. (2012) and we extended their analysis for
a viscoelastic stiff lid and also for higher lithospheric viscosities.
We demonstrate that while for lower lithospheric viscosity (1023

Pa s) the IVF topography (from a free-slip model) is in good agree-
ment with free surface topography, for higher lid viscosities the

differences between free-slip and free-surface models significantly
increase. These differences, that is, the error of the instantaneous
IVF approach, are largely reduced if the lid is viscoelastic. Similar
conclusions were made by Zhong (2002) for stationary loading.

Second, we performed thermal convection models focused on the
evolution of planetary mantles. Lithospheric stresses were shown
to differ considerably. If a free surface is prescribed and stiff litho-
sphere is thus able to bend and build topography, then viscoelastic
models generally show lower stress amplitudes than purely viscous
models. If a planetary mantle is cooling from an initially hot state
with a thin lithosphere, then the memory effects associated with
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Table 2. Summary of the viscoelastic effects in stagnant lid convection.

‘Frozen-in’ Stress
Model characteristics stresses reduction

Free-slip, initially thick lithosphere No No
Free-slip, initially thin lithosphere Yes No
Free surface, initially thick lithosphere No Yes
Free surface, initially thin lithosphere Yes Yes

viscoelastic deformation result in a complex layered stress pat-
tern, in which the shallower layers reflect preceding sublithospheric
convective features active during the earlier stages of the model
evolution. These frozen-in stresses remain visible on a time scale
comparable to the Maxwell relaxation time of the lithosphere. The
described phenomenon is thus a transient feature and depends on
the initial temperature distribution. It is clearly favoured by the ini-
tially thin thermal boundary layer that may result from cooling of a
magma ocean (Solomatov 2007). The vigour of the initial convec-
tion increases the observed complexity of the stress structure that
is being recorded in the cooling and thickening lithosphere.

Thielmann et al. (2015) also observe non-smooth deviatoric
stresses, while presenting simulations with surface Deborah num-
bers up to Des = 105. Since the Deborah number is given by the
ratio of the lithosphere’s viscoelastic relaxation time to the diffusion
time, it takes approximately Des diffusion times for the stresses to
relax from a certain state. The simulations presented in Thielmann
et al. (2015) do not last multiples of the diffusion times, thus it is
likely that the stress state of the lithosphere is largely influenced
by the initial conditions, even though it cannot be seen from the
Nusselt numbers or average velocity of the flow.

The key parameter controlling the importance of the memory ef-
fect is the Maxwell relaxation time of the lithosphere. The viscosity
of the crust and lithosphere that determines the relaxation time is,
however, largely unknown. Its estimates based on postglacial re-
bound inversions only give a lower bound, since the glacial cycle
occurs on a time scale of about 100 kyr. Layers with tM larger than
100 kyr behave effectively as an elastic material to such loading (see
Section 3) and GIA (glacial isostatic adjustment) inversions are thus
insensitive to higher viscosities. The fact that subduction or loading
due to sedimentation are successfully modelled using a thin elastic
plate theory again provides only the lower bound on the viscosity,

in the sense that that tM must be larger than the characteristic time
of these phenomena.

In our simulations the Maxwell relaxation time of the lithosphere
was determined by the upper viscosity cut-off. Lowering its value
directly decreases the importance of the medium’s memory. The
ability to quickly deform in an elastic manner remains intact. One
may thus expect the stress reduction effect to be independent on cut-
off viscosity. However, less stiff purely viscous lids show smaller
resistance when compared to more stiff purely viscous ones, and
decreasing the cut-off value thus reduces the importance of both the
stress memory and the stress reduction when comparing viscous
and viscoelastic models with the same lithospheric viscosities. In
a limited extent we still observed both effects when lowering ηmax

down to 1025 Pa s in thermal convection simulations with a free
surface.

The models presented here were designed to investigate the basic
effects of viscoelasticity on the evolution of a stiff planetary lid.
As such they suffer from several simplifying assumptions. The first
and probably major one is that the rheological description does not
include any form of plastic yielding, even though the brittle failure
and ductile yielding are important deformation mechanisms in the
lithosphere and limit the resulting stresses. The second one is the
simple Boussinesq approximation of the energy equation that does
not account for shear heating. Viscous dissipation could play an
important role in strain localization in a visco-elasto-plastic model
(e.g. Schmalholz & Duretz 2015). In particular, it was recently
shown by Jaquet et al. (2016) that the release of elastic energy pro-
motes faulting induced by thermal softening. On the basis of our
results we may speculate that yielding or thermal softening would
occur on shorter wavelengths in the models that include viscoelas-
ticity. Especially in the early stages of planetary evolution, when
their thermal boundary layer is thin, viscoelasticity in combination
with plasticity could dramatically affect lithospheric deformation
or regime of convection. Indicative in this regard may be the results
by Muhlhaus et al. (2006), who demonstrate an increase in the fre-
quency of overturns in the episodic lid regime due to elasticity. Such
a scenario should in future be tested in visco-elasto-plastic models
in three-dimensional spherical geometry.

Despite the above mentioned simplifications we believe that our
models demonstrate that including viscoelasticity is important if

Figure 10. Model Mel with T0 = 1900 K, dTB = 30 km and a free surface after 2 Gyr, computed in 2-D spherical annulus (left) and 3-D Cartesian (right)
geometries. Air is not shown in the 3-D model in order to reveal the surface stresses and the model domain is thresholded by an isotherm of 1670 K to show
the spatial distribution of the downwellings. The stress scale is clipped in both cases to enhance the visibility of the subsurface layered structures, with the
exception of the surface stresses in the 3-D simulation that are shown in their full range.
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stress evolution and deformation of the lithosphere in models of
planetary mantles are addressed.
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A P P E N D I X A : B E N C H M A R K T E S T S

Our implementation of viscoelasticity was verified using two bench-
mark tests: (i) a stationary viscoelastic flow in a 2-D box with aspect
ratio 1 (Harder 1991) and (ii) the deformation of an elastic slab em-
bedded in a viscous medium (Gerya 2010).

A1 Thermal convection of an isoviscous Maxwell fluid

In this benchmark we test the implementation of the advection
and corotation of the stress. We perform the simulation of thermal
convection of an isoviscous Maxwell fluid in a 1 × 1 Cartesian box.
We assume the Boussinesq approximation and reproduce results
of Harder (1991) for Rayleigh number 9487 and Deborah number
1.5 × 10−3 (Fig. A1) on a mesh with 40 × 40 grid points. We
make a visual comparison of the isolines of vorticity, temperature,
deviatoric shear stress and normal stress difference (the exact values
of isolines are stated in Harder 1991).

In reproducing the stationary flow it is important to realize that
the Weissenberg number, Wei := 2De‖D‖D2/κ , is close to 1 for
De = 1.5 × 10−3 and the given model setup. A Maxwell body with
Jaumann’s rate chosen as the stress rate (i.e. the medium we study)
exhibits shear softening in a simple shear flow for Weissenberg
number greater than 1 (see Muhlhaus & Regenauer-Lieb (2005) for
details) and shear softening leads to numerically unstable solutions.
The viscoelastic convection simulation thus needs to be started from
a state which is close to the stationary solution (e.g. from the viscous
stationary solution), in order not to exceed the critical Weissenberg
number when reaching the final state.

For Deborah numbers higher than 1.5 × 10−3 we no longer reach
a stationary solution and the simulations become numerically un-
stable (the velocities go to infinity). Setting a lower bound on the
time step used in the rheological eqs (11)–(13) prevents such insta-
bilities, largely extending the range of Deborah numbers that can
be modelled. Detailed analysis of the problem is beyond the scope
of this paper—in the convection simulations of planetary bodies
presented in the main text we are far from the critical Weissenberg
number.
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Figure A1. Stationary flow of an isoviscous fluid in a 40 × 40 box with free slip boundaries, De = 0.0015. See Harder (1991) for comparison with a viscous
solution and for exact values of the isolines. Left top picture shows streamlines of the extra force term ∇ · [(1 − Z)τ̃ n−1], middle picture in the bottom row
displays normal stress differences.

In this benchmark test we used a grid-based donor cell advection
technique instead of the tracer based advection scheme applied in
all other calculations. Tracer based advection of stress does not
perform well in this case, due to the high vorticity gradient in the
corners of the box (in combination with the low resolution of the
mesh). The number of tracers per cell needed to produce results
comparable to the grid-based approach is over 1000 here. The time
step was governed by the CFL stability criterion.

A2 Recovery of the original shape of an elastic slab

Following Gerya (2010) we further examine the deformation of
a hanging slab due to gravitational force. An effectively elastic
slab, attached to the left boundary, is being steadily deformed over
20 kyr by gravity (g = 10 m s−2). After 20 kyr gravity is switched off
and the original shape of the slab is recovered. The slab viscosity is
1027 Pa s and its shear modulus is 1010 Pa. The effectively viscous
medium that surrounds the slab has a viscosity of 1021 Pa s and
a shear modulus of 1020 Pa. The density of the slab is 4000 kg
m−3 while the surrounding material has a density of 1 kg m−3.
Extreme discontinuities in material parameters are treated using
harmonic averaging of the shear modulus in order to avoid high
numerical viscosity on the interfaces (Gerya 2010). A resolution of
128 × 128 nodes with 100 particles per cell was used, time step of
2 yr was being gradually increased after reaching 30 kyr. Results
are summarized in Fig. A2(a). The elastic (relaxation time ∼3 Gyr)
slab fully recovered its shape while the viscous medium sustained
permanent deformation.

This particular example is rather challenging as the model in-
cludes sharp interfaces with strongly varying properties. Numerical
diffusion has to be kept to a minimum when treating advection of
quantities, including the stresses, in order to retain clear interfaces
as the slab is being deformed and then relaxed to its original posi-
tion. While both methods that we tested, that is, donor cell scheme
and storing stress on tracers, lead to a perfect recovery of the slab
for the case described above, the methods begin to differ if gravity

is applied longer than for 20 kyr. Fig. A2(b) compares the recovery
obtained when the gravity was switched off only after 35 kyr (still
a negligible time with respect to the relaxation time of the slab).
We see that numerical diffusion has slightly distorted the recovery
when grid-based donor cell method was used, especially near the
unattached corners of the slab. Quantities other than the stress (η,
μ and ρ) were carried on tracers in both cases.

Parts of the slab experience significant rigid body rotation during
the studied process and the corotational term in eq. (7) is thus
crucial—omitting it would lead to distorted recovery of the slab.

A P P E N D I X B : S U B G R I D O S C I L L AT I O N S
O F S T R E S S

Similarly to advection of the temperature field, the problem with
treating advection of stresses using the incremental update scheme
by Gerya & Yuen (2007) is that stress jumps on adjacent markers,
resulting from flow-induced stirring, cannot be damped out by grid-
scale corrections.

Fig. B1 shows an example of such oscillations in a thermal con-
vection simulation. The viscoelasticity parameter Z is close to one
(cca. 0.8) in the circled region and the stress should thus be governed
by the viscous creep, forming relatively smooth patterns. How-
ever, tracers with a different stress history are transported close to
each other in the selected region. The grid-scale updates of stresses
(eqs 22 and 23 in Gerya & Yuen 2007) cannot relax such subgrid
stress differences and result in the depicted unphysical oscillations
of the stress field. The likelihood of such oscillatory behaviour in-
creases with increasing resolution and with the number of tracers
per cell.

In our modification of the algorithm designed by Gerya & Yuen
(2007), we use directly eq. (11) to evaluate the stress tensor on
each tracer. First, the tracers are advected and the corotational term,
computed on the grid, is interpolated to them. Then, the value of the
viscoelasticity parameter is computed on the grid and interpolated
to each tracer, so that we can multiply the stress on each tracer
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Figure A2. (a) Reproduction of numerical experiment by Gerya (2010). A slab with high viscosity of 1027 Pa s and shear modulus 1010 Pa is attached to the
left boundary and surrounded by a weak viscoelastic medium with viscosity 1021 Pa s and shear modulus 1020 Pa. Density of the slab is 4000 kg m−3, density
of the surroundings is only 1 kg m−3. (b) Comparison of the numerical methods used for advection of stresses. Gravity is switched off after 35 kyr and not 20
kyr as in the upper case, left panel shows the recovery when grid-based donor cell method is applied, right panel shows the recovery when tracers are used to
advect the stresses.

Figure B1. Stress oscillations in a viscoelastic thermal convection. Red circle points to the oscillatory behaviour, right panel zooms in the respective part of
the model domain in a sequence of time steps. Model parameters are the same as in Fig. 4 from the main text.

by (1 − Z). Finally, the term 2ZηD
n is computed on the grid and

interpolated to each tracer.
In regions with Z close to 1, the procedure leads to practi-

cally re-setting the value of stress on each tracer to 2ZηD
n at

each time step, and two adjacent tracers will thus carry simi-
lar stress tensors after the procedure, even if before there was a
mutual stress jump (consequently, the oscillations as depicted in

Fig. B1 are not observed). In regions with Z close to 0, the pro-
cedure behaves as an incremental update scheme: the stress ten-
sor changes only slightly on each tracer and mutual stress differ-
ences among the tracers are preserved. This is important as in-
terpolating the entire stress (instead of the stress change) from
grid to tracers would lead to spurious numerical diffusion in such
regions.
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