Characteristic lengths affecting evaporation from porous media: The roles of pore size distribution, gravity and wettability

Nima Shokri, Dani Or and Peter Lehmann

Laboratory of Soil and Environmental Physics (LASEP)
School of Architectural, Civil and Environmental Engineering
Ecole Polytechnique Federale de Lausanne (EPFL)
Lausanne, Switzerland

November 2007
Introduction

• The drying of porous media affects land-atmosphere water exchange and surface energy balance, and is important for many biological and engineering applications.

• Evaporation rate depends on external boundary conditions and on the textural and transport properties of porous media.

• Drying rate from porous media may exhibit an abrupt change into much lower value and consequently consuming more energy.
Open questions

- Prediction of drying rate remains an open question due to dependency on atmospheric demand (temperature, humidity and air flow velocity), complexity of pore spaces and interplay between different forces.

- Abrupt transitions in evaporation rates are not fully understood.

- Unknown roles of heterogeneity and pore size distribution in drying rates and liquid phase distribution.

Yiotis et al. (2004)
Objectives

- Quantify effects of pore size distribution & external conditions on drying behavior of porous media
- Characterize effects of textural contrasts on evaporation from porous media
- To determine dominant mechanisms supplying and controlling drying rate
- To determine liquid phase distribution during drying of porous media
Observations in uniform sands: transition in evaporation rates

- Columns of different lengths packed with sand (~0.3-0.9mm) - initially saturated; constant B.C.
- Abrupt transition from stage 1 (high) to stage 2 (low) evaporation rate at similar mass loss irrespective of column length
- Hypothesis - transition marks end of mass flow supporting externally-imposed evaporation rate (stage 1) and transition to vapor diffusion (stage 2)
- What determines drying front depth at transition?
Evaporation in uniform sands – particle size effects

- Clues - (1) transition occurs at the same drying front depth for a given medium; (2) transition is delayed for finer-textured media
Characteristic lengths & evaporative mass flows

- Evidence - _stage 1_ is sustained by liquid flow across a characteristic length spanned by hydraulically connected _pore size distribution_ (linking drying front with evaporating surface)

- A simple model for capillary interactions and drying front displacement during evaporation uses a _pair of hydraulically interacting capillaries_ (Krischer, 1956)

Hydraulic coupling and capillary-driven liquid flow to evaporating surfaces (while drying front recedes into the medium) are key to sustaining constant rate evaporation
A bundle of interacting capillaries model - (Krischer, 1956)

- Key evaporation interactions could be described by a pair of hydraulically interacting capillaries (Krischer, 1956)
- These interactions highlight the key mechanism by which a constant evaporation rate is maintained!

\[L_c = \frac{2\sigma}{\rho g} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \]
Pore size distribution & characteristic length

- Drying front depth at transition to stage 2 varies with medium

The characteristic length is determined by hydraulically connected pore size distribution (deduced from SWC)

\[L_c = \frac{2\sigma}{\rho g} \left(\frac{1}{r_{\text{min}}} - \frac{1}{r_{\text{max}}} \right) \]
Drying of layered sand columns

• To apply the concept of characteristic length in more general case, drying experiment with glass column packed with layered sand under initially saturated condition have been conducted.

Fine sand 0.1-0.5 mm
Coarse sand 0.3-0.9 mm
Changes in evaporation rates

- Abrupt transition from stage 1 to stage 2 of drying rate was sensitive to the position of coarse layer. The closer position of coarse layer to surface, the sooner transition
Liquid flow toward surface

- The concentration of blue color at surface increased gradually during experiment showing evaporation of water at surface!

- Initial rate of drying occurs at potential atmospheric demand irrespective of layering sequence.
Predictable drying front depth for layered media

- Transition occurs at a predictable drying front depth for a given sequence and position of layered media reflecting the most limiting characteristic length in the sequence
Neutron radiography: Detailed Drying dynamics

- Neutron attenuation used to analyze the liquid phase distribution and morphology of the drying front during drying.
- The attenuation of neutrons was measured every 5 minutes.
- Changes in total mass loss, relative humidity, temperature, and wind speed were recorded digitally.

![Graph showing mass loss by neutron attenuation vs mass loss by balance (g)](graph.png)
Neutron radiography: Image analysis

- The grey level image has to be segmented into black and white image to analyze dynamics of drying front.

- Black and white colors correspond to the water and air phases, respectively.
Dynamics of drying front in HI sand
Dynamics of drying front

- Hydrophilic and hydrophobic sand used for drying experiments to analyze the impact of capillary forces on drying rate as well dynamics of drying front
- Wettability imposes limitation on dynamics of drying front.
- Pinning and unpinning of drying front is more visible within HI sand due to stronger capillary forces.
Wettability

- An important issue solved by neutron radiography was delineating near surface water content affected by Wettability.

- Lower near surface water content in HO sand may be the main reason in lowering the rate of liquid flow toward surface.
Liquid flow vs. Vapor diffusion: effects on evaporation

- Measured drying rate was much higher than estimated based on vapor diffusion from drying front to surface indicating dominant role of liquid flow
What next?

- Effect of partial wettability on characteristic length
- Role of gravity
- Evaporation-condensation mechanism
- Vapor diffusion from isolated clusters left behind drying front could be a mechanism to enhance drying rate
- In very fine textured media, viscous dissipation may be important defining a viscous characteristic length.
Summary and conclusions

- First stage of drying is affected by continuous liquid paths spreading within porous media sustaining hydraulic connection between drying front and evaporating surface.
- Diffusive fluxes cannot explain drying rate in the first stage.
- Characteristic length could be deduced from capillary pressure-saturation curve to predict transition from stage 1 to stage 2.
- Drying is an atmospheric controlled process in the first stage, disrespective to the structure of porous medium.
- Neutron radiography measurement established existence of hydraulic connection between drying front and evaporating surface and is a powerful technique to deduce the dynamics and morphology of drying front as well temporal and spatial water content distribution.
Acknowledgments

• Prof. Dani OR and Dr. Peter Lehmann

• This project (2000021-113676/1) is funded by the Swiss National Science Foundation
Thank you for your attention
Temperature and relative humidity

- Temperature and relative humidity was nearly constant and equal in drying experiments on HI and HO sand.
Water content distribution

- Results showed average water content distribution was not affected by evaporation rates, but by wettability of sand.
- In HI sand, water content was not increased monotonically from surface due to formation of isolated water cluster within sand preserved by capillary forces for a long time, whereas in HO sand it increased monotonically from surface.
Drying rate and hydraulic conductivity

- Much higher hydraulic conductivity than measured drying rate indicated no hydraulic limitation on mass flow during the considered period

- Alternative explanation for falling drying rate is related to the coupling between external viscous boundary layer with decreasing surface water content