Can a primary remanence be retrieved from partially remagnetized Eocene volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

Wentao Huang1,2, Guillaume Dupont-Nivet1,2,3,4, Peter C. Lippert5,6, Douwe J. J. van Hinsbergen7, Mark J. Dekkers2, Zhaojie Guo1, Ross Waldrip5, Xiaochun Li7, Xiaoran Zhang7, Dongdong Liu1, and Paul Kapp5

1Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, China, 2Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 3Geosciences Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes CEDEX, France, 4Institute of Earth and Environmental Science, University of Potsdam, Potsdam-Golm, Germany, 5Department of Geosciences, University of Arizona, Tucson, Arizona, USA, 6Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA, 7Department of Earth Sciences, University of Hong Kong, Hong Kong, China

Abstract Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previous yielded data suggesting a low paleolatitude (~10°N). New zircon U-Pb dates indicate an age of ~52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°, 44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at ~20°N and took place by ~50 Ma.

1. Introduction

One of the principal techniques to quantify the timing of collision between India and Asia is to define when the paleomagnetically determined paleolatitudes from terranes on either side of the Neotethyan suture zone in southern Tibet started to overlap. Paleomagnetic results to address this problem in the 1980s and early 1990s [Zhu et al., 1981; Pozzi et al., 1982; Westphal and Pozzi, 1983; Achache et al., 1984; Lin and Watts, 1988; Chen et al., 1993] were partly inconclusive. Recently, this research question has been taken up again by several groups [Chen et al., 2010; Dupont-Nivet et al., 2010; Liebke et al., 2010; Sun et al., 2010; Tan et al., 2010; Chen et al., 2012; Liebke et al., 2012; Sun et al., 2012; van Hinsbergen et al., 2012; Huang et al., 2013; Lippert et al., 2014; Yang et al., 2014]. Surprisingly, and rather paradoxically, the paleolatitude estimates in these recent studies vary from 5°N to 30°N despite the fact that the underlying data are all from the same rock sequences—the regionally extensive Linzizong Group of the Lhasa terrane, which ranges in age from ~69 to ~48 Ma. This spread of paleolatitude estimates correspond to locations of the southern Tibetan margin that are >2500 km apart and result in collision age estimates that range from as young as 35 Ma to as old as 65 Ma.

What is the explanation for these differences? Why do different groups of paleomagnetic investigators who study the very same rock sequences report such disparate results? These discrepancies are worrisome because they question the usefulness of paleomagnetism as a primary means for estimating the age and
paleolatitude of the India-Asia collision. Are there uncharacterized geologic and/or paleo- and rock-magnetic processes that result in this wide range in estimates, and if so, can we discriminate reliable data from questionable data?

Several explanations for the range in paleolatitude estimates have already been explored. For example, sedimentary processes can produce significant postdepositionally shallowed inclinations, as shown in sedimentary rocks in southern Tibet [e.g., Tan et al., 2010; Huang et al., 2013]. Additionally, secular variation of the Earth’s magnetic field leads to an intrinsic variation in spot readings of that field over any time interval [e.g., Johnson et al., 2008; Tauxe et al., 2008; Deenen et al., 2011]. Thus, small data sets of volcanic rocks that undersample geomagnetic field behavior may deviate significantly from an accurate estimate of a mean paleomagnetic field direction. The relevance of this problem for Tibetan paleolatitude estimates was recently discussed by Lippert et al. [2014].

Other sources of error may relate, however, to the recording mechanisms of rocks and their vulnerability to remagnetization. Paleogeographic and tectonic reconstructions using paleomagnetic data require that the recorded natural remanent magnetization (NRM) in rocks was acquired at the time of their formation. The acquisition of a geologically stable remanence long after the formation of a rock, termed as secondary magnetization, is an insidious problem for paleomagnetism. Undated or unrecognized secondary remanent magnetizations often obscure or completely replace the primary magnetizations and are thus a common obstacle to applying paleomagnetism to global (plate) tectonic reconstructions [e.g., Elmore et al., 2012; Font et al., 2012; Van Der Voo and Torsvik, 2012]. Suspected mechanisms for remagnetization include elevated temperature, stress, chemical alteration, or secondary mineral growth related to fluid migration or other chemical processes. These processes can act alone or in concert, and they frequently result in changes in the magnetic mineralogy, in the NRM, or both [Jackson and Swanson-Hysell, 2012]. The severity of the problem is illustrated by widespread remagnetization events linked to large-scale tectonic processes, which are common in orogens in North America [e.g., McCabe et al., 1983; Miller and Kent, 1988; McCabe and Elmore, 1989; Elmore and McCabe, 1991; Elmore et al., 2001; Geissman and Harlan, 2002; Evans et al., 2012; Zechmeister et al., 2012], South America [e.g., D’Agrella-Filho et al., 2000; Trindade et al., 2004; Rapolini and Bettucci, 2008; Font et al., 2011, 2012; Tomezzoli et al., 2013], Europe [e.g., Molina Garza and Zijderveld, 1996; Van der Voo et al., 1997; Dinarés-Turell and García-Senz, 2000; Weil and Van der Voo, 2002; Zegers et al., 2003; Gong et al., 2009a; Zwing et al., 2009; Roberts et al., 2010], and Asia [e.g., Chen and Courtillot, 1989; Appel et al., 1991, 1995; Otofuji et al., 2003; Torsvik et al., 2005; Kim et al., 2009; Liu et al., 2011; Appel et al., 2012; Köscher et al., 2013]. Therefore, proper identification of “remagnetized” and “nonremagnetized” rocks is critical to paleomagnetic research, particularly for paleogeographic reconstructions of continental blocks in convergent orogenic belts.

In this paper, we reinvestigate volcanic sequences of the lower Linzizong Group in the Nanmulin Basin of the southern Lhasa terrane. A previous study [Chen et al., 2010] argued that the observed paleomagnetic results with low inclinations are primary. A low Paleogene latitude (~10°N) for the Lhasa terrane was calculated, implying its collision with the Tibetan Himalaya at tropical latitudes at ~55–60 Ma [Chen et al., 2010]. We provide more robust data on the age of the volcanic sequences with zircon U-Pb geochronology. We then test whether we can reproduce the paleomagnetic data of Chen et al. [2010]. Third, we provide a detailed rock magnetic analysis, utilizing thermomagnetic experiments, hysteresis data, first-order reversal curve (FORC) diagrams, and isothermal remanent magnetization (IRM) component analysis to evaluate the carriers of the remanent magnetization(s) and their likely age of origin. We also apply end-member modeling of magnetic components [Gong et al., 2009b] to the whole section to identify potential mechanisms for the acquisition of remanent magnetization. Optical and scanning electron microscope inspection is used to visually characterize the magnetic mineralogy. We describe potential NRM acquisition mechanisms for the Paleogene volcanic rocks in the Nanmulin Basin and discuss our findings in the context of dating the collision between the Tibetan Himalaya and the Lhasa terrane.

2. Geologic Background

The Lhasa terrane was the southernmost part of the continental Eurasian plate before collision with the continental lithosphere of the Indian plate [Tapponnier et al., 1981; Burg et al., 1983; Allegre et al., 1984; Burg and Chen, 1984; Sengor, 1984; Dewey et al., 1988; Yin and Harrison, 2000]. To the south, it is separated
Figure 1

Legend
- Quaternary
- E, Danzong Formation
- Fault
- Unconformity
- Paleomagnetic sampling locations of Chen et al. (2010)
- Bedding orientation
- Chronological sampling locations of this study
- Neogene
- Cretaceous
- Nianbo Formation
- Granite

Figure 1b

Figure 1c

Figure 1d

Figure 1
from the Tibetan Himalaya, derived from the northernmost continental lithosphere of the Indian plate, by the Yarlu-Tsangpo suture. To the north, the Lhasa terrane is separated from the Qiangtang terrane by the Late Jurassic–Early Cretaceous Bangong-Nujiang suture [Dewey et al., 1988; Yin and Harrison, 2000; Kapp et al., 2007] (Figure 1). Before the collision of India with Eurasia, northward subduction of Neotethyan oceanic lithosphere under Eurasia produced a Cordilleran-type continental margin along the southern margin of the Lhasa terrane. This subduction history is, in part, manifested in the Gangdese arc, testified by the vast occurrence of the Paleocene to Eocene Linzizong volcanic successions, which are prominent expressions [Coulon et al., 1986; Yuquans, 1995; Ding et al., 2003]. The extrusive Linzizong Group is widely distributed in an east-west elongated belt across the northern edge of the Gangdese arc and the Lhasa terrane, and its emplacement age ranges from 69 Ma to 48 Ma [Coulon et al., 1986; Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR), 1993; Mo et al., 2003; Zhou et al., 2004; He et al., 2007; Lee et al., 2007; Mo et al., 2008; Lee et al., 2009; Ding et al., 2014]. Stratigraphic [Garzanti et al., 1987; Green et al., 2008; Najman et al., 2010; Hu et al., 2012; DeCelles et al., 2014; Orme et al., 2014] and metamorphic [de Sigoyer et al., 2000; Leech et al., 2005; Guillot et al., 2008] arguments are numerous for collision being underway by 55–50 Ma. The Linzizong Group provides an ideal target to use paleomagnetism to determine the paleolatitudes of the Lhasa terrane during the initial stages of the India-Asia collision.

The Linzizong Group typically unconformably overlies strongly deformed Mesozoic strata. It is divided, from bottom to top, into three subunits: the Dianzhong Formation (E1d), the Nianbo Formation (E2n), and the Pana Formation (E2p) [Team of Regional Geological Survey of the Bureau of Geology and Mineral Resources of Tibet Autonomous Region, 1990; Liu, 1993; Leier et al., 2007; Mo et al., 2008]. In the Nanmulin Basin, approximately 50 km northeast of Xigaze (Figure 1a), the Linzizong Group is well exposed and has a thickness of ~4500 m (Figure 1b). The investigated successions consist of the E1d and E2n units, whereas the youngest E2p unit is missing (Figure 1b) [Geological Survey of Tibet Autonomous Region (GSTAR), 2002]. The lowest E1d strata lie unconformably on the older Cretaceous Shexing Formation. E1d is composed of andesitic lavas at the bottom, strongly altered brown grey dacitic to rhyolitic tuff in the middle, and pinkish massive andesitic tuff layers near the top (Figure S1 in the supporting information). Thin red siltstone layers are also found near the top. E2n is separated from E1d by a slight angular unconformity. This unit is characterized by interbedded red siltstone and pinkish andesitic tuff layers that are similar in composition to the top of E1d (Figure S1 in the supporting information). Neogene strata unconformably overlie E2n north of the study region (Figure 1b). In our section, E1d dips consistently to the north, whereas a local kilometer-scale fold is expressed by E2n strata with part of the strata dipping to the south (Figures 1c and 1d). Although many geochronologic studies have been done on the Linzizong Group, especially in the Linzhou Basin [Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR), 1993; Mo et al., 2003; Zhou et al., 2004; He et al., 2007; Lee et al., 2007], no isotopic age data from the Linzizong Group in the Nanmulin Basin have been reported.

3. U-Pb Geochronology
Two hand samples were collected from the massive tuff layers in the upper part of E1d (ND4) and tuff layers in the lower part of E2n (ND10) for U-Pb geochronologic analyses (Figure 1b). Methods and procedures for U-Pb zircon geochronology are described in Text S1 in the supporting information. The analytical data are reported in Table S1 in the supporting information.

Zircons from sample ND4 are clear and euhedral with crystal lengths between 20 and 120 μm and length to width ratios of 1:1 to 4:1. Zircons show clear oscillatory zoning with rare inherited cores. Forty spot analysis of 30 individual zircon grains (combined rim and core analyses of some individual grains) show a weighted mean age of 51.98 ± 0.44 Ma (2σ, mean square weighted deviate (MSWD) = 0.96) with ages that range between 49.2 and 78.2 Ma (Figure 2a). The ages are all concordant. One grain was excluded from the weighted mean due to inheritance.

Figure 1. (a) Schematic geologic map showing the distribution of the Gangdese batholith and the associated Linzizong volcanic sequences in the Lhasa terrane, southern Tibet (modified from Yin and Harrison [2000] and Lee et al. [2009]). (b) Paleomagnetic sampling locations on a simplified geologic map of the Nanmulin Basin (modified from GSTAR [2002]). (c) Geologic map of the sampled section with bedding attitudes and sampling locations marked. (d) Schematic cross-section along the line AA’ in Figure 1c. Paleomagnetic samples are divided into five groups (group A-E1d-L to group E-E2n-L).
Zircons from sample ND10 are clear and euhedral with crystal lengths between 35 μm and 110 μm and length to width ratios of 1:1 to 5:1. Zircons show clear oscillatory zoning with no inherited grains or cores. Thirty-five spot analysis of 27 individual zircon grains (combined rim and core analyses of some individual grains) show a weighted mean age of 51.98 ± 0.79 Ma (2σ, MSWD = 0.44) with ages that range between 49.4 and 57.1 Ma (Figure 2b). The ages are all concordant.

Although we have not applied zircon U-Pb dating to the lower part of E1d in the Nanmulin Basin, our results show that the top of E1d (ND4) and the bottom of E2n (ND10) were formed at ~52 Ma. Furthermore, these indistinguishable ages also indicate that the age of the unconformity is ~52 Ma. Importantly, there is no significant age gap between the upper part of E1d and overlying E2n directly above the unconformity.

4. Paleomagnetic Sampling

Typical 2.5 cm diameter paleomagnetic cores were collected using a portable gasoline-powered drill and oriented with magnetic and Sun compasses. Each paleomagnetic sampling site consists of at least eight independent core samples. Bedding attitudes determined from the planar orientation of the top surface of the volcanic flows and interbedded sedimentary layers were measured throughout the section at several sampling sites. The observed variations in the orientations of measured bedding are small within each of the two sampled areas. For E1d, a mean bedding orientation (dip azimuth = 3.4°N; dip = 24.5°; α95 = 3.3°) from 30 measurements was applied to all the samples (Table S2 in the supporting information). Similarly, we also calculated and applied a mean bedding orientation (dip azimuth = 181.1°N; dip = 16.6°; α95 = 4.7°) from 26 measurements for all samples from E2n (Table S2 in the supporting information).

We divided our samples into five groups on the basis of lithologic differences described in the geologic setting and following the paleomagnetic studies described below (Figure 1d). Group A-E1d-L ("L" stands for lava) includes sample sites NL1, NL2, and NL3, which are fresh lava flows collected near the base of E1d.
5. Demagnetization and Analysis of the Directions of the Characteristic Remanent Magnetization

5.1. Demagnetization

We isolated characteristic remanent magnetization (ChRM) directions using both thermal and alternating field (AF) demagnetization. Samples were heated and cooled in an Alto-Shaam convection oven (model TD48-SC) that has a residual field less than 10 nT. The natural remanent magnetization (NRM) was measured on a horizontal 2G Enterprises DC superconducting quantum interference device (SQUID) cryogenic magnetometer (with a noise level of $3 \times 10^{-12} \text{ Am}^2$). AF demagnetization was completed with an in-house developed robotized sample handler [Mullender et al., 2005] attached to a horizontal pass-through 2G Enterprises DC SQUID magnetometer (noise level of $2 \times 10^{-12} \text{ Am}^2$) hosted in the magnetically shielded room (residual field <200 nT) at the Fort Hoofddijk Paleomagnetic Laboratory, Utrecht University (Netherlands). Samples were progressively demagnetized with 19 thermal steps ranging from room temperature to 690°C. Progressive AF demagnetization was performed with 22 successive steps from 0 up to 100 mT.

Most samples from groups A-E1d-L, C-E1d-L, D-E2n-S, and E-E2n-L display high-temperature or high-coercivity magnetizations that decay linearly toward the origin (Figure 3), whereas only a few samples from group B-E1d-L reveal linear demagnetization trajectories during thermal or AF treatment.

For samples from group A-E1d-L, a NRM component was commonly removed at low temperature (150°C) or low field level (20 mT) by thermal and AF treatment (Figures 3a–3c), respectively. After removing this weak component, a second component with a lower unblocking temperature (<450°C, defined as low-temperature component (LTC) hereafter) albeit a higher coercivity (>60 mT) was often also isolated, and a third component was unblocked by 560–580°C (defined as intermediate temperature component (ITC) hereafter) and within a 30–60 mT coercivity window (Figures 3a–3c and Figure S2a in the supporting information). These two components have indistinguishable ChRM direction.

Samples from group B-E1d-L volcanic deposits did not respond well to thermal or AF demagnetization. The NRM intensity for most samples was usually weak ($1 \times 10^{-4} – 6 \times 10^{-2} \text{ A/m}$). No well-defined ChRM could be isolated from more than half of the samples because of an overprint or erratic demagnetization behavior (Figures 3d and 3e). A component that unblocked between 450 and 580°C and between 25 and 100 mT could be isolated after removing an initial component up to 450°C or 25 mT for some samples (Figures 3f and 3g).

For the sedimentary samples from sites in group D-E2n-S, the maximum unblocking temperature is around 670–680°C (Figure 3k and Figure S2c in the supporting information). After removing a low-temperature component, a ChRM could usually be isolated between 400 and 680°C.

For volcanic samples from group E-E2n-L, one or possibly two overlapping components with maximum unblocking temperatures of 560–580°C (ITC) and 670–680°C (HTC) were also isolated during thermal demagnetization (Figures 3h–3j, Figures 3l–3n, and Figures S2b–S2f in the supporting information). It is difficult to evaluate if these two components share the same direction statistically because of the inherent noise induced by thermal demagnetization, in particular within 450–580°C; we note, however, that a small difference in the direction of the ITC and HTC can be detected in some samples (Figure 3h). ChRM directions of these samples were determined from 450 to 680°C covering both the ITC and the HTC. AF treatment was usually ineffective at isolating the ChRM in these samples.

For the sedimentary samples from sites in group D-E2n-S, the maximum unblocking temperature is around 670–680°C (Figure 3k and Figure S2c in the supporting information). After removing a low-temperature component, a ChRM could usually be isolated between 400 and 680°C.

For volcanic samples from group E-E2n-L, one or possibly two overlapping components with maximum unblocking temperatures of 560–580°C (ITC) and 670–680°C (HTC) were also isolated during thermal demagnetization (Figures 3h–3j, Figures 3l–3n, and Figures S2b–S2f in the supporting information). It is
usually difficult to discriminate the ITC from the HTC because the two components overlap. ChRM directions determined from the thermal demagnetization were calculated using both the ITC and the HTC. A stable component was also isolated between 10 and 100 mT for all the samples subjected to AF treatment, although the demagnetization trajectories do not decay entirely to the origin (Figures 3l and 3n). We chose the AF results to define the ChRM directions of the samples; thermal results were only used for a few samples when AF results were not available.

Figure 3. Representative demagnetization diagrams for samples covering the entire section. Alternating field (AF) and thermal demagnetizations for samples NL2.8 and NL3.7 are shown for comparison. Closed (open) symbols represent the projection of vector end points on the horizontal (vertical) plane; values represent alternating field and thermal demagnetization steps in mT (millitesla) and °C, respectively. All diagrams are displayed after bedding tilt correction. (a–c) Samples from group A-E1d-L. (d–g) Samples from group B-E1d-L. (h–j) Samples from group C-E1d-L. (k) Sample from group D-E2n-S. (l–n) Samples from group E-E2n-L. The red solid line represents high-temperature component (HTC); the red dashed line represents intermediate temperature component (ITC). Int_{NRM} represents the intensity of the NRM measured by the magnetometer during demagnetization at 20°C or 0 mT.
5.2. ChRM Directions

Principal component analysis [Kirschvink, 1980] on at least five successive steps resulted in precisely
determined ChRM directions for most of these samples (Table S3 in the supporting information). Thermal
and AF demagnetization paths for specimens from the same sample are usually comparable, although
thermal demagnetization results are sometimes more erratic and yield higher maximum angular deviation
(MAD) values (Figures 3b and 3n). Directions with MAD > 5° were systematically rejected from further
analysis (Table S3 in the supporting information). Discrete lava site-mean directions with k < 50 and n < 5
were discarded following the volcanic data selection criteria of Johnson et al. [2008] and consistent with the
selection criteria used in Lippert et al. [2014] (Table S4 in the supporting information). Paleomagnetic directions
were transformed into virtual geomagnetic poles and evaluated using Fisher’s [1953] statistics.

ChRMs from E1d samples are entirely of reverse polarity, and ChRMs from E2n samples are entirely of normal
polarity. The results that met our selection criteria were divided into three groups according to rock types:
(1) 20 volcanic sites from E1d, (2) 7 tuff sites from E2n, and (3) 38 single measurements of red siltstone
specimens from E2n (Figures 4a and 4b and Table S4 in the supporting information). To complement these
groups, we incorporated the corresponding directions of sites xn12–xn18 from E1d and xn01–xn11 from E2n
previously reported by Chen et al. [2010] from the same intervals in this area.

The difference in bedding attitude between the sampled E1d (dipping toward the north) and E2n (dipping
toward the south) intervals provides the opportunity to assess the prefolding origin of the interpreted
ChRMs by performing several fold tests. The combination of the site data from this study and those from Chen
et al. [2010] covers both flanks of the fold in E2n, which allows us to apply geologically rigorous fold tests to
the red siltstone and tuff in E2n separately. For the red siltstone, the nonparametric fold test of Tauxe and
Watson [1994] is negative with best grouping reached at 12% to 28% untilting (Figure 5a). For the tuff, the
ChRM directions from both flanks of the fold in E2n have a common true mean direction (CTMD) with a
classification of “B” before tilt correction (Figure 5b) [McFadden and Lowes, 1981; McFadden and McElhinny,
1990], but they are scattered after tilt correction (Figure 5c). The nonparametric fold test of Tauxe and Watson
[1994] is also negative with best grouping reached at 2% to 47% untilting (Figure 5b). Moreover, we inspected
the directions from volcanic sites in E1d and E2n combined. Before tilt correction, the ChRM directions of
volcanic sites in E1d and E2n have a CTMD with a classification of “A” [McFadden and Lowes, 1981; McFadden
and McElhinny, 1990] (Figure 5c). After tilt correction, however, the ChRM directions from E1d and E2n
show increased dispersion with k value decreasing from 47.5 (in situ) to 18.1 (tilt corrected) (Figure 5c). The
nonparametric fold test of Tauxe and Watson [1994] is clearly negative with best grouping reached at ~5% to
7% untilting (Figure 5c). Our U-Pb geochronologic data show that no significant time gap exists between
the sampled E1d and E2n intervals and thus exclude the possibility that this negative fold test is induced by
tectonic motion accrued over a long time gap. These threefold tests clearly show that ChRMs recovered from
the Linzizong Group in the Nanmulin Basin were largely acquired after folding.

We conclude that the ChRM directions observed in the lower Linzizong Group in the Nanmulin Basin
have not faithfully recorded the geomagnetic field at the time of volcanism and sedimentation. Instead,
fold tests imply that the magnetizations have a postfolding origin. We present below the results of
systematic rock magnetic analyses to determine the carrier(s) of the remanence, and therefore potential
processes responsible for remagnetization, and to determine whether the primary (if present) and
secondary magnetizations can be successfully isolated.

6. Rock Magnetism and Petrography

6.1. Rock Magnetism

We applied detailed rock magnetic analyses, including thermomagnetic experiments, hysteresis measurements,
FORC measurements, and IRM component analysis [Kruiver et al., 2001], with the goal of identifying the
magnetic carrier(s) of the studied rocks. Descriptions of the methods used for these analyses are in
Text S2 in the supporting information.

Typical thermomagnetic results for samples from group A-E1d-L show an irreversible decrease in magnetization
up to ~600°C (Figure 6a and Figure 53a in the supporting information). These samples are also characterized
by two phases distinguished by a clearly steeper decrease in magnetization slope of the thermomagnetic
runs: a LTC (~250–450°C) and an ITC (~450–580°C). The hysteresis loops are relatively open and essentially saturated at 500 mT (Figure 6b and Figure S4a in the supporting information). The \(B_c \) and \(B_{cr} \) values are also low, indicating a dominant low-coercivity component (Table S5 in the supporting information). The vertical spread of the contours in the FORC diagrams indicates an assemblage of strongly interacting single domain (SD)-like magnetic particles (Figures S5a and S5b in the supporting information) [Roberts et al., 2000; Chen et al., 2007]. Another component with pseudosingle domain (PSD) to multiple domain (MD) state is also observed (Figures S5a and S5b in the supporting information) [Roberts et al., 2000]. The IRM acquisition curves for the samples from group A-E1d-L are fit with three IRM components: a soft component L1 (L stands for lava) with \(B_{1/2} \) (the field at which half of saturation isothermal remanent magnetization (SIRM) is reached) ~40 mT and dispersion parameter (DP) 0.26 (log units); a relatively hard component L2 with \(B_{1/2} \) > 120 mT and a lower DP of ~0.2; and a much harder component L3 with \(B_{1/2} \) ~400 mT and DP of 0.25 (Figure 6c and Figure S6a and Table S6).

Figure 4. (a and b) Equal-area projections of site mean ChRM directions before (IS; Figure 4a) and after (TC; Figure 4b) bedding tilt correction for volcanic sites from both E1d and E2n. The blue circles and dots are the reported results from volcanic rocks by Chen et al. [2010] from E1d and from E2n (southern limb of the local fold), respectively. Before tilt correction, the average site mean directions for E1d are the antipode of the average site mean directions for E2n. The common true mean direction test of the two averages before tilt correction is positive with classification of B [McFadden and Lowes, 1981]. The star represents present-day magnetic field (PDF, following Geocentric Axial Dipole Hypothesis) in the sampled section. (c and d) Equal-area projections of individual ChRM directions before (IS; Figure 4c) and after (TC; Figure 4d) bedding tilt correction for sedimentary specimens from E2n. Note that sedimentary rocks from E2n give higher inclination values than the intercalated tuffs, which is unusual because sedimentary rocks are typically affected by inclination shallowing.
We interpret the SD-like magnetic particles carrying the LTC and component L2 to be Ti-rich titanomagnetite, whereas the PSD-MD-like magnetic particles carrying the ITC and component L1 to be Ti-poor titanomagnetite. Components L1 and L2 are the predominant magnetic carriers and contribute more than 95% to the SIRM. A minor contribution (<5%) of hematite to the SIRM is illustrated by component L3 [Kruiver and Passier, 2001].

The rock magnetic properties for volcanic samples from groups B-E1d-L, C-E1d-L, and E-E2n-L are similar to each other. Representative samples show an irreversible decrease in magnetization up to ~680°C (Figure 6d and Figures S3b–S3f in the supporting information). The observed decrease from 450°C to 580°C and from 620°C to 680°C in magnetization indicates the existence of two components: an ITC (~450–580°C) and a

Figure 5. (a and b) Nonparametric fold tests [Tauxe and Watson, 1994] applied on (Figure 5a) the red siltstone and (Figure 5b) tuff from both the southern and northern limbs in E2n, respectively. Equal-area plots of the individual ChRM directions from each specimen are shown in (left) geographic coordinates and (right) after tilt correction. (Figure 5, right) Results of the fold test with bootstrapped statistics on the first eigenvalues (τ_1) upon progressive untilting. The 95% bootstrap error interval is indicated. Before tilt correction, the ChRM directions for samples from both siltstones and tuffs are clustered. After tilt corrections, these directions become scattered. (c) The same nonparametric fold test applied to E1d and E2n volcanic samples. Before tilt correction, the ChRM directions of samples from E1d and E2n pass the CTMD test with a classification of A [McFadden and Lowes, 1981].
Figure 6. Typical rock magnetic results from samples from (a–c) group A-E1d-L; (d–f) groups B-E1d-L, C-E1d-L, and E-E2n-L; and (g–i) group D-E2n-S. For each group, a representative high-field thermomagnetic run with thin (thick) lines representing the heating (cooling) curves; hysteresis loop, IRM acquisition, back-field curves, and IRM component analysis results are shown. The thermomagnetic runs were performed in air. Heating and cooling rates were 10°C min$^{-1}$. The hysteresis loops, IRM acquisition curves, and back-field curves were measured for B between -2 T and 2 T. Hysteresis loops are corrected for the paramagnetic contribution. M_s: saturation magnetization, M_r: remanent saturation magnetization, and B_c: coercive force; IRM component analysis was applied following Kruiver et al. [2001]. The squares are the measured data points. The components are marked with different colored lines in the linear acquisition plot (LAP) and as hatches in the gradient acquisition plot (GAP). Three components (components L1 to L3) are required to fit the IRM acquisition curves of the volcanic rocks from groups A-E1d-L, B-E1d-L, C-E1d-L, and E-E2n-L. Two components (components S1 and S2) are required to fit the IRM acquisition curves of the sedimentary samples from group D-E2n-S. SIRM is in 10$^{-6}$ Am2/kg. $B_{1/2}$ and DP are in log$_{10}$ millitesla. Values of $B_{1/2}$ are displayed in each panel.
crystallized postemplacement. Observations suggest that titanomagnetite was formed during cooling of the magma, whereas hematite is distributed around titanomagnetite grains as an oxidation product (Figures 7j, 7k, and 7o). These textural third habit coexists with clay minerals associated with feldspar alteration (Figures 7j–7i). A second habit is distributed along the cleavage of magmatic biotite as an alteration product (Figures 7f–7g). One habit is distributed along cracks in what appears to be precipitation from a secondary fluid (Figure 7d). Features with a trellis of relatively Ti-rich lamellae distributed in a Ti-poor host. This high-temperature exsolution feature suggests that the host andesitic lava eruption [Turner et al., 2008]. It also implies that the titanomagnetite is primary.

The abundance of titanomagnetite grains in samples from groups C-E1d-L and E-E2n-L is remarkably less than that of NL1.2 (group A-E1d-L), which is in agreement with their generally weak magnetizations. Two iron oxides with contrasting petrographic features are present in these samples: titanomagnetite and hematite. The titanomagnetite grains are euhedral or have resorbed edges (Figures 7b and 7c). These grains host numerous inclusions of ilmenite and silicate minerals. Most of the grains show solid-state exsolution features with a trellis of relatively Ti-rich lamellae distributed in a Ti-poor host. This high-temperature exsolution feature suggests that the host andesitic lava flow was formed during a slow-ascending eruption [Turner et al., 2008]. It also implies that the titanomagnetite is primary.

The abundance of titanomagnetite grains in samples from groups C-E1d-L and E-E2n-L is remarkably less than that of NL1.2 (group A-E1d-L), which is in agreement with their generally weak magnetizations. Two iron oxides with contrasting petrographic features are present in these samples: titanomagnetite and hematite. The titanomagnetite grains are euhedral to subhedral and are usually more than 100 μm in size (Figures 7e, 7g, 7h, 7j, 7k, and 7o). Most titanomagnetite grains with inclusions also show exsolution features, indicating that they have a primary origin (Figures 7e, 7g, 7h, 7j, 7k, and 7o). Another iron oxide with very different habits (Figures 7d and 7f–7o) is hematite, based on the rock magnetic studies described above. This hematite usually has a very fine grain size and is characterized by a very different distribution within the rock from the titanomagnetite grains. Four distinct habits of hematite are observed. One habit is distributed along cracks in what appears to be precipitation from a secondary fluid (Figure 7d). A second habit is distributed along the cleavage of magmatic biotite as an alteration product (Figures 7f–7i). A third habit coexists with clay minerals associated with feldspar alteration (Figures 7j–7o). A fourth habit is distributed around titanomagnetite grains as an oxidation product (Figures 7j, 7k, and 7o). These textural observations suggest that titanomagnetite was formed during cooling of the magma, whereas hematite crystallized postemplacement.
Figure 7. SEM backscattered electron images for selected samples. Hem: hematite, Ti-Mt: Titanomagnetite. (a–c) Sample NL1.2 from group A-E11-L, with abundant titanomagnetite particles showing solid-state exsolution features. (d) Hematite growing along a fracture in sample NL22.7 from group C-E11-L. (e) A large inclusion-rich titanomagnetite grain with solid-state exsolution features in sample NL22.7. (f) Hematite growing along cleavage planes within a preexisting silicate mineral (probably biotite) in sample NL22.7. (g and h) Large titanomagnetite grains coexisting with exsolved fine hematite from biotite in sample NL27.4 from group C-E11-L. (i) Hematite exsolved from deformed biotite crystal and grown within the cleavage of sample NL27.4. (j and k) Fine-grained authigenic hematite that has grown around the large titanomagnetite grain in sample NL40.8 from group E-E2n-L. (l and m) Low-magnification and corresponding high-magnification view of sample NL40.8 shows hematite growing around the edge of silicate minerals. (n) The large feldspar pyroclast intruded by quartz vein is altered to albite and iron oxides in sample NL40.8. (o) Euhedral titanomagnetite grains in sample NL40.8.
7. End-Member Modeling of Magnetic Components

To further illustrate and identify the processes responsible for remagnetization, we applied the end-member modeling method recently developed by Gong et al. [2009b]. This method has been helpful for identifying remagnetized and nonremagnetized sedimentary rocks independent of paleomagnetic field tests [Gong et al., 2009b; Van Hinsbergen et al., 2010; Meijers et al., 2011; Dekkers, 2012; Aben et al., 2014], although it heretofore has not been applied to volcanic rocks. Detailed methods of the end-member modeling are described in Dekkers [2012].

To ensure that we have fully characterized the end-members, we measured IRM acquisition curves from 112 samples representing the entire studied section (24 from group A-E1d-L, 15 from group B-E1d-L, 25 from group C-E1d-L, and 48 samples from group E-E2n-L). Prior to measuring each IRM acquisition curve, each sample was demagnetized along three orthogonal axes in a 300 mT AF field with the last demagnetization axis parallel to the IRM acquisition field; this procedure minimizes the effects of magnetic interaction and thermal activation on the shape of the IRM acquisition curves [Heslop et al., 2004]. The IRM was acquired in 61 logarithmically increasing field steps from 0 up to 700 mT on the same in-house-developed robot described previously. All data were acquired with a two-position measurement protocol, which allows the best correction of the sample tray [Dekkers, 2012].

MATLAB modules with the end-member modeling algorithm of Weltje [1997] were used to analyze the data [Heslop and Dillon, 2007]. The program normalizes all IRM curves to their maximum value to form a closed data set. The solutions for two to nine end-members were calculated, and the following criteria were used to select the optimal number of end-members: (1) a coefficient of determination r^2 between the input data and the end-member model [Heslop et al., 2007] must be >0.8, (2) inclusion of yet another end-member provides marginal interpretational value, (3) virtual duplication of end-members should be avoided: the limit of interpretational power has been reached, and (4) the program calculates the end-member model by iteration until a threshold convexity error has been reached (set at -6) following Weltje [1997]; if that convexity is not reached within 1000 iterations, then, the convexity error at termination can also be used to judge the quality of the model [Dekkers, 2012].

End-member solutions reveal that a two-end-member model has a higher convexity of -4.9528 (after 1000 iterations) and an r^2 value of 0.78113 (Figure 8a), which is lower than 0.8; thus, this model is rejected. A three-end-member model has an r^2 value of 0.86121, above the lower limit of 0.80, and convexity of -2.5707 (Figure 8a). The model with four end-members has yet a higher r^2 of 0.90819 and lower convexity of -1.7154 (Figure 8a). The models with five or more end-members are characterized by virtual duplication of end-members, which means the data set is overinterpreted in those cases.

Comparison of the models with three and four end-members shows that the end-members EM1 and EM2 are indistinguishable, whereas EM3 in the three-end-member model is divided into EM3 and EM4 in the four-end-member model (Figures 8b and 8c). The calculated end-member IRM acquisition curves are subjected to IRM component analysis as described below. In the IRM component analysis results of different end-members of the two models, EM1 and EM2 are interpreted to be hematite and Ti-rich titanomagnetite, respectively (Figures 8b and 8c). EM3 is interpreted in the three-end-member model as a combination of Ti-poor titanomagnetite and hematite (Figures 8b and 8c); both EM3 and EM4 in the four-end-member model are also considered combinations of Ti-poor titanomagnetite and hematite. From these results, we conclude that the four-end-member model does not discriminate more distinctive and geologically interpretable end-members than the three-end-member model. Thus, we prefer to interpret our data set using the three-end-member model.

The shape of the normalized IRM acquisition for each of the three end-members is shown in Figure 8b. EM1 is far from saturation in a 700 mT field, which is typical for hard magnetic minerals. EM2 is rather soft; it is fully saturated in a 400 mT field. EM3 is considered a mixture of magnetic minerals with variable coercivities. It is partially saturated at 100 mT, but it is not fully saturated at 700 mT.

We applied IRM component analysis to these three end-members [Kruiver et al., 2001]. Six components (component 1 to component 6, increasing from magnetically soft to hard) can be recognized in total (Figures 8e–8g). EM1 can be fit with two components with very high coercivities (components 4 and 6; Figure 8e); these two components are probably hematite. We interpret EM2 to be Ti-rich titanomagnetite,
Figure 8. End-member modeling of acquisition curves of IRM of the volcanic rocks. (a) Diagram showing the r^2 versus number of end-members. (b and c) End-member modeling for the normalized IRM acquisition curves with (Figure 8b) three and (Figure 8c) four end-members. (d) Ternary plot of the three-end-member model showing end-member percentages for each specimen. Red diamonds: samples from group A-E1d-L; black dots: samples from groups B-E1d-L, C-E1d-L, and E-E2n-L. Group D-E2n-S (sediments) is not considered here. (e–g) IRM component analysis [Kruiver et al., 2001] of the end-members in the preferred three-end-member model. The squares are the calculated data points from end-member modeling that are used to fit the IRM components. The components are marked with differently colored lines in the linear acquisition plot (LAP); in the gradient acquisition plot (GAP), they are shown in hatches. Component 1 has a very low coercivity and contribution; it is not assigned a physical meaning. Components 2 and 3 are more prominent; they represent Ti-poor and Ti-rich titanomagnetite. Components 4, 5, and 6 have the highest coercivity and show properties characteristic of hematite. The IRM is normalized to the highest IRM value (IRM/IRM$_{700\text{ mT}}$); log$_{10}$ ($B_{1/2}$) and DP are in log$_{10}$ millitesla. The values of $B_{1/2}$ are displayed in each panel.
based on its fairly high $B_{1/2}$ of ~90 mT (Figure 8f). The IRM acquisition curves for EM3 are fit with three IRM components: component 1 with $B_{1/2}$ of ~13 mT, soft component 2 with a $B_{1/2}$ of ~45 mT, and a very hard component 5 with $B_{1/2}$ of ~600 mT (Figure 8g). Component 1, a very low-coercivity component, constitutes only ~7% of the SIRM; it is only required to fit the skewed-to-the-left distribution of component 2 and is not given physical meaning other than being the result of thermally activated component 2 particles [Egli, 2004; Heslop et al., 2004]. Component 2 and component 5 typically represent Ti-poor titanomagnetite and hematite, respectively. The contribution of component 2 to the SIRM is approximately 60%, and the contribution of component 5 to the SIRM is around 30% (Table S7 in the supporting information). For fitting of the three end-members, components 2 and 3 are ascribed to Ti-poor and Ti-rich titanomagnetite, respectively; components 4, 5, and 6 are all hematite but with different grain sizes. The components (components 2–6) required to fit the end-members in three-end-member model in IRM component analysis are thus consistent with the components for the IRM acquisition curve fitting of the volcanic rocks in our rock magnetic studies described above (Figure 6 and Table S6 in the supporting information). This observation illustrates that the three end-members are geologically interpretable, a feature of the technique emphasized by Weltje [1997]: interpreters should strive for geologically meaningful end-members and not lean too much on only mathematically dictated solutions.

In a ternary plot (Figure 8d), most samples from groups B-E1d-L, C-E1d-L, and E-E2n-L (black dots) are mixtures of EM1 and EM3 with minor contributions from EM2. In contrast, samples from group A-E1d-L (red diamonds) plot very close to the baseline with most of them clustering around the EM2 apex. Additionally, careful inspection of the ternary plot reveals that more samples plot closer to EM1 than EM3, which means that the contribution of EM1 is higher than that of EM3 for most samples in groups B-E1d-L, C-E1d-L, and E-E2n-L.

Interpretations of the rock magnetic and petrographic studies and end-member modeling are summarized in Table 1.

Table 1. Summary of the Paleomagnetic and Petrographic Studies and End-Member Modeling

<table>
<thead>
<tr>
<th>Group</th>
<th>Sites</th>
<th>Formation</th>
<th>Rock</th>
<th>C-RM</th>
<th>Thermomagnetic Runs</th>
<th>Hysteresis</th>
<th>IRM Component analysis</th>
<th>SD</th>
<th>PSD-MD</th>
<th>End-member</th>
<th>TM-Hematite</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-E1d-L</td>
<td>NL4-16</td>
<td>Fresh andesitic lava</td>
<td>250–450°C; 525–580°C</td>
<td>ITC: Ti-rich TM; HTD: Ti-rich TM</td>
<td>95% Ti-poor TM and Ti-rich TM</td>
<td>100% hematite</td>
<td>5-10% Ti-poor TM</td>
<td>400–680°C</td>
<td>0.1-0.4</td>
<td>EM3 (hematite)</td>
<td>Primary TM</td>
</tr>
<tr>
<td>B-E1d-L</td>
<td>NL17-28</td>
<td>E1d altered hyalocrystalline dacite tuff</td>
<td>450–560°C; 660–750°C</td>
<td>ITC: Ti-poor TM; HTD: hematite</td>
<td>95% Ti-poor TM</td>
<td>100% hematite</td>
<td>5-10% Ti-poor TM</td>
<td>250–450°C</td>
<td>0.1-0.4</td>
<td>EM3 (hematite)</td>
<td>Primary TM</td>
</tr>
<tr>
<td>C-E1d-L</td>
<td>NL17-28</td>
<td>Red andesite</td>
<td>450–560°C</td>
<td>ITC: Ti-poor TM; HTD: Ti-rich TM</td>
<td>95% hematite</td>
<td>100% hematite</td>
<td>5-10% Ti-poor TM</td>
<td>250–450°C</td>
<td>0.1-0.4</td>
<td>EM3 (hematite)</td>
<td>Primary TM</td>
</tr>
<tr>
<td>D-E2n-S</td>
<td>NL34-40</td>
<td>Pinkish anesitic tuff</td>
<td>460–590°C</td>
<td>ITC: Ti-poor TM; HTD: hematite</td>
<td>95% hematite</td>
<td>100% hematite</td>
<td>5-10% Ti-poor TM</td>
<td>450–560°C</td>
<td>0.1-0.4</td>
<td>EM3 (hematite)</td>
<td>Primary TM</td>
</tr>
<tr>
<td>E-E2n-L</td>
<td>NL17-28</td>
<td>Pinkish andesitic tuff</td>
<td>460–590°C</td>
<td>ITC: Ti-poor TM; HTD: hematite</td>
<td>95% hematite</td>
<td>100% hematite</td>
<td>5-10% Ti-poor TM</td>
<td>450–560°C</td>
<td>0.1-0.4</td>
<td>EM3 (hematite)</td>
<td>Primary TM</td>
</tr>
</tbody>
</table>

Notes:
modeling are summarized in Table 1. Based on the analysis described above for the mineralogical interpretation of the three end-members and the contribution of each end-member estimated from the ternary plot (Figure 8d), it is clear that magnetic carriers for most samples in groups B-E1d-L, C-E1d-L, and E-E2n-L are dominated by secondary hematite with a minor contribution from magmatic titanomagnetite, whereas the dominant magnetic carrier in group A-E1d-L is magmatic titanomagnetite. We thus suspect that the secondary ChRM indicated by the negative paleomagnetic field tests is carried mostly by secondary hematite.

8. Discussion

8.1. Acquisition of the Natural Remanent Magnetization

Remagnetization may be the result of thermoviscous resetting [e.g., Kent, 1985; Johnson and Swapp, 1989; Harlan et al., 1996]. Considering that the lower E1d unit is regionally intruded by Eocene granitic plutons (Figure 1b) and large volumes of Neogene lavas crop out north of the studied Nanmulin section, we suspect that thermal conduction from this volcanic episode resulted in remagnetization of the Linzizong Group in the Nanmulin Basin. However, this is inconsistent with rock magnetic and petrographic results that show that secondary hematite is a prominent magnetic carrier. Furthermore, apatite fission track thermochronology of samples from the E1d and E2n volcanic rocks, as well as the adjacent granitic plutons (Figure 1b) clearly indicates that the Linzizong volcanic rocks in the Nanmulin area were never heated above ~110°C since eruption [Yuan et al., 2007]. Therefore, we conclude that a more viable mechanism for remagnetization of the Linzizong Group in the Nanmulin Basin is the growth of new magnetic particles at low temperature by alteration and fluid flow. This would result in a chemical remanent magnetization (CRM) residing in the secondary magnetic mineral(s) crystallized at temperatures well below the Curie temperature. This mechanism is a widespread cause of remagnetization [e.g., Dekkers, 2012; Elmore et al., 2012].

Precipitation and growth of secondary hematite to produce CRMs during low-temperature hydrothermal alteration of igneous rocks have been described by several workers [e.g., Edel and Schneider, 1995; Edel and Aifa, 2001; Geissman and Harlan, 2002; Ricordel et al., 2007; Preeden et al., 2009; Parcerisa et al., 2013]. Edel and Schneider [1995] found that high laboratory unblocking temperature magnetizations carried by secondary hematite and hematized titanomagnetite could be isolated in Upper Carboniferous-Lower Permian rhyolites from Northern Vosges (France). These magnetizations fail a fold test and display directions consistent with Middle-Upper Permian directions from Variscan, Europe. Continuous overprinting due to low-temperature alteration of titanomagnetite and crystallization of secondary hematite from the Middle Permian to Upper Permian was suggested to explain the resetting of the primary magnetization. In another example, Geissman and Harlan [2002] studied Precambrian crystalline units in the Rocky Mountains and suggested that magnetization of exclusively reversed polarity in those rocks was presumably acquired during the Permo-Carboniferous reversed superchron. The dominant magnetic carrier of these plutonic rocks is secondary hematite, which was formed during migration of basinal fluids (at temperatures below 200°C) along regional nonconformities and fracture or fault zones in Precambrian basement rocks.

Analogously, we suggest that secondary hematite growth is responsible for the (partial) magnetization resetting of the Linzizong Group observed in the Nanmulin Basin. The widespread occurrence of residual Ti-rich titanomagnetite in samples from group A-E1d-L and the rare presence of secondary hematite suggest that these rocks probably carry a primary remanence. The observed ChRM directions of samples from group A-E1d-L have steeper inclinations than samples from groups B-E1d-L, C-E1d-L, and E-E2n-L (Table S4 in the supporting information). Nevertheless, a robust paleopole cannot be calculated from only three site mean directions. Samples from groups B-E1d-L, C-E1d-L, and E-E2n-L are characterized by variable amounts of secondary hematite and magmatic Ti-poor titanomagnetite, supporting the conclusion that these rocks are partially remagnetized, as indicated by the negative fold tests. Red siltstones in group D-E2n-S only have hematite as a remanence carrier and are completely remagnetized as indicated by the failed fold test. Mineralogically, the remagnetization processes are characterized by decomposition of the Ti-rich titanomagnetite and precipitation of the secondary hematite, whereas part of the relatively stable Ti-poor titanomagnetite survived the alteration processes.
We hypothesize that the secondary hematite growth occurred either by circulation of hydrothermal fluids, by paleoweathering, or by a combination of these processes. Weathering during the generation of the unconformity between E₁d and E₂n is unlikely, however, because both alteration and related remagnetization of the tuff and siltstone layers are also observed in the overlying E₂n formation. The siltstone in E₂n appears to be completely remagnetized, but the overlying tuffs in E₂n appear to be only partially remagnetized, a conclusion based mostly on the relative contribution of hematite to the SIRM (Table S6 in the supporting information). Interestingly, the concentration of secondary hematite appears to decrease downward and upward from the siltstone layers in E₂n. We suggest that these siltstones served as a conduit for a low-temperature, oxidizing hydrothermal fluid. This fluid could have migrated along the unconformity between E₁d and E₂n and percolated downward and upward from this unconformity. It liberated iron from titanomagnetite and from some silicates that were precipitated quickly as hematite afterward. This process can explain the distribution of secondary hematite growth and (partial) overprinting of the original magnetization. The observation that group A-E₁d-L volcanic rocks in E₁d farthest from the siltstone layers and the unconformity have not been affected by remagnetization is consistent with this interpretation.

The age of the low-temperature hydrothermal alteration is unknown, but the negative fold test indicates that the CRM postdates the folding. Moreover, before the bedding tilt correction, the CRM directions defined by the red siltstones in E₂n are clustered around a direction that is different from the geocentric axial dipole field direction for the present latitude of the section with a difference in inclination of 9.3°±3.9°. This suggests that the CRM was acquired before the Brunhes Chron (780,000 years ago). Remagnetization of E₁d and E₂n must have occurred at different times, because they have different polarities (Figures 4a and 4b). The duration of the remagnetization event may have been an extended period of time, but the antipodal character (Figure 4a) of the ChRMs from both formations shows that there was no appreciable change in latitude or vertical axis rotation during this time period. We emphasize that we cannot confirm that this was the actual sequence of events responsible for the remagnetization demonstrated by the negative fold tests, rock magnetic studies, and petrographic observations; it is, however, consistent with the regional geology of the Nanmulin Basin.

8.2. An Attempt to Recover the Primary Inclinations From Partially Remagnetized Strata

The ChRMs that we and Chen et al. [2010] isolated from the Linzizong Group in the Nanmulin Basin are a mixture of a primary thermoremanent magnetization (TRM) carried by magmatic titanomagnetite and a secondary CRM carried by pigmentary hematite. Ideally, these TRMs and CRMs with different directions could be separated during thermal or AF demagnetization because of the different unblocking temperatures of titanomagnetite and hematite. However, the directions from the TRM cannot be clearly distinguished from the CRM (Figure 3) because the unblocking temperature and field spectra for titanomagnetite and pigmentary hematite overlap. Further discussion on this point is provided in Text 4 in the supporting information.

Because standard paleomagnetic analyses fail to isolate the primary direction from the partially remagnetized volcanic rocks from groups B-E₁d-L, C-E₁d-L, and E-E₂n-L, the paleomagnetic results from the Nanmulin Basin should be, in principle, disregarded in paleogeographic reconstructions. However, the simultaneous unblocking of the primary and secondary components, and the variable degree of pigmentary hematite contribution of our samples, inspired us to attempt a novel approach to isolate the primary and overprint directions.

To this end, we first use the IRM component analysis of each sample to estimate the percentages of the signal carried by hematite and titanomagnetite, respectively. For the 45 samples with ChRM directions isolated by AF demagnetization in group E-E₂n-L that pass the filter for the ChRM direction selection described above, we plotted the inclination and declination of each ChRM direction before and after tilt correction against the percent contribution of hematite to the SIRM. For the inclination, the result shows a distinct linear correlation between inclination and the contribution of hematite to the SIRM in the sample (Figures 9a and 9b). In site coordinates, the slope of the line is 0.1982, indicating that the inclination of the ChRM direction increases with increasing amount of hematite (Figure 9a). The square of Pearson's correlation coefficient (R^2) is 0.3948, which is higher than the critical value of 0.3458 for 45 samples with $p = 0.02$. In tilt-corrected coordinates (Figure 9b), the slope of the line is 0.1982. The square of Pearson's correlation coefficient (R^2) is 0.3775, which is also higher than the critical value of 0.3458 for 45 samples ($p = 0.02$).
Figure 9. (a and b) The hematite contribution to the SIRM in percentage versus magnetic inclination (Figure 9a) before and (Figure 9b) after tilt correction for 45 tuff samples from E2n (all ChRM directions determined from AF demagnetization). The regression lines with 95% confidence intervals are indicated with the black lines and shaded areas. (c and d) The hematite contribution to the SIRM in percentage versus magnetic declination (Figure 9c) before and (Figure 9d) after tilt correction for the same 45 samples. (e and f) The hematite contribution to the SIRM in percentage versus magnetic inclination (Figure 9e) before and (Figure 9f) after tilt correction for 27 lava samples from E1d (ChRM directions mostly determined from thermal demagnetization). (g and h) The hematite contribution to the SIRM in percentage versus magnetic declination (Figure 9g) before and (Figure 9h) after tilt correction for the same 27 E1d samples. N: number of the samples selected; \(R^2 \): square of Pearson's correlation coefficient; m: slope of the regression line; dm: error bar of the slope; and c: intercept.
Based on the normality assumption, the estimator of the slope coefficient will itself be normally distributed. At the same time, the sum of squared residuals is distributed proportionally to \(\chi^2 \) with \((n - 2)\) degrees of freedom [Steel and Torrie, 1980]. This allows us to use the \(t \) statistics to construct a confidence interval for the inclination. Our rock magnetic and microcopy analyses and the negative fold tests show that the hematite-carried CRM is secondary and was acquired after folding. We can now estimate the ambient geocentric axial dipole field inclination at the time of remagnetization by extrapolating the in situ correlation line in Figure 9a to a 100% hematite contribution. This yields an estimated inclination of 42.9° (with lower and upper confidence limits of 41.5° and 44.4°, respectively, 95% significance) [Asuero et al., 2006]. This suggests that the Nanmulin Basin was located at a paleolatitude of 24.9°N (23.9°N, 26.1°N) during the poorly constrained time of remagnetization. The inclination of the secondary CRM is very similar to the mean in situ inclination for further discussions on the possible pathway of NRM acquisition in E1d volcanic rocks. Each of these more complex multiple remagnetization and alteration processes (see Text S5 in the supporting information) can be used to recover the inclination of the TRM but now after tilt correction (Figure 9b). This value is 38.1° (35.7°, 40.5°; 95% confidence limit) and should be the inclination of the primary TRM recorded by the tuffs in unit E2n. This inclination corresponds to a primary latitude of 21.4°N (19.8°N, 23.1°N) at the time the sampled lavas erupted and cooled. This value is statistically indistinguishable from the paleolatitude determined from the equivalent volcanic rocks of the upper Linzizong Group in the Linzhou Basin ~200 km to the east [Dupont-Nivet et al., 2010]. The declination of the ChRM plotted against the contribution of hematite to the SIRM reveals no systematic correlation. This suggests that the original declinations of the TRM and CRM probably were not very different, such that no significant vertical axis rotation occurred between the acquisition of the TRM and the CRM (Figures 9c, 9d, 9g, and 9h).

Although the similarities between the modeled directions and primary magnetizations in coeval lavas elsewhere on the Lhasa terrane (described below) may be fortuitous, we regard the consistency among the paleomagnetism, rock magnetism, petrography, and directional modeling to be encouraging. Our analysis using the approach described above suggests the linear correlation between decreases or increases in magnetic inclination (depending on the polarity of TRM in E1d volcanic rocks, see more information in Text S5 in the supporting information), and an increase in the contribution of hematite to the SIRM should also be observed for volcanic rocks in the north dipping E1d unit. However, the data do not display the predicted correlation (Figures 9e and 9f). We offer a few explanations for this: the small number of the samples in the data set (only 27); the narrow bandwidth of hematite contribution to the SIRM (52%–98%, with only four samples below 80%; Table S8 in the supporting information); or that the CRM of E1d volcanic rocks reflects more complex multiple remagnetization and alteration processes (see Text S5 in the supporting information for further discussions on the possible pathway of NRM acquisition in E1d volcanic rocks). Each of these factors can be tested with additional work on a larger sample collection.

8.3. Implications for Reconstructing the India-Asia Collision Zone

We now explore the implications of our findings for tectonic reconstructions of the India-Asia collision history. The isolated ChRM directions from the Linzizong volcanic rocks in the Nanmulin Basin are similar to those reported by Chen et al. [2010], but we show that the shallow inclinations and the low paleolatitudes calculated from these inclinations and presented by these authors result from a tilt correction of paleomagnetic directions that were largely obtained after tilting. Thus, the Paleogene latitude of the Lhasa terrane cannot be directly calculated from these data sets because the Linzizong Group in the Nanmulin Basin has been remagnetized.

Our exploratory approach using linear modeling of magnetic inclination, however, may identify the paleolatitude at the time the primary and secondary magnetization were acquired. Our modeling suggests primary inclinations of 38.1° (35.7°, 40.5°), corresponding to a paleolatitude of 21.4°N (19.8°N, 23.1°N). This inclination value is statistically indistinguishable from the mean inclination of 40.3°±4.5° (95% confidence limit) measured in the coeval volcanic rocks of the upper Linzizong Group in the Linzhou Basin ~200 km to the east [Dupont-Nivet et al., 2010], as well as from the shallowing-corrected inclinations (40.0° (33.1°, 49.5°) and 41.3°±3.3° based on two independent correction methods) in the sedimentary rocks of E2p in that same basin [Huang et al., 2013]. With a total of ~600–700 km of Cenozoic intra-Asian...
shortening north of the Nanmulin Basin [van Hinsbergen et al., 2011] and minor northward plate motion of Eurasia [Torsvik et al., 2012], the Nanmulin Basin eventually arrived at its modern latitude of ~30°N. A latitude of primary magnetization of 21.4°N (19.8°N, 23.1°N) and a latitude of remagnetization of 24.9°N (23.9°N, 26.1°N) are consistent with this moderate northward motion of the Nanmulin Basin from its early Eocene position to its modern latitude.

In addition to inclination shallowing and insufficient averaging of paleosecular variation of the paleomagnetic field, our study shows that unrecognized remagnetization contributes to the wide dispersion of the reported paleolatitude estimates for the Lhasa terrane. Future paleomagnetic studies should take utmost care to demonstrate the primary origin of the NRM. Regardless of the type of the rocks studied, paleomagnetic studies that have tested and corrected for all these potential pitfalls converge on a consistent Paleogene latitude of the Lhasa terrane that is 20°±4°N. As detailed elsewhere [Dupont-Nivet et al., 2010; van Hinsbergen et al., 2012; Lippert et al., 2014], this paleolatitude results in a paleomagnetically determined collision age between the Tibetan Himalaya and the Lhasa terrane of ~50 Ma or earlier.

9. Conclusion

The Linzizong Group in the Nanmulin Basin is the Paleogene volcanic succession associated with the Gangdese arc that is distributed along the southern Lhasa terrane. Chen et al. [2010] concluded that these rocks erupted ~10°N, which is in the lower range of estimates described in the recent paleomagnetic literature for the Lhasa terrane. Here we have reevaluated this study with a detailed sampling of the same section to test the reproducibility of the previous result and to assess why age equivalent sections in the Lhasa terrane yield very different paleolatitude estimates. Our comprehensive paleomagnetic and rock magnetic analyses and microscopic investigations lead us to the following conclusions:

1. The angular unconformity between E1d and E2n is approximately 52 Ma and that there is a negligible time gap between the two lower volcanic sequences of the Linzizong Group in the Nanmulin Basin.
2. The low paleomagnetic inclinations reported by Chen et al. [2010] are reproducible and cannot be explained by sampling or measurement error.
3. Remanence carriers for the Linzizong volcanic sequences in Nanmulin Basin are primary magmatic titanomagnetite and secondary pigmentary hematite (as fine as specularite).
4. Negative fold tests demonstrate that the ChRM is a posttilting secondary paleomagnetic remanence. The low paleolatitude interpreted previously from the Linzizong volcanic sequences in the Nanmulin Basin was caused by an erroneous tilt correction applied to a magnetization acquired after tilting. Therefore, this direction does not represent the early Eocene latitude of the Lhasa terrane.
5. Our modeling of the contribution of secondary magnetization components to the measured magnetic inclination suggests that primary and secondary magnetizations can unblock simultaneously. The linear model can be extrapolated to estimate the direction recorded by 100% primary components (after tilt correction) or 100% secondary components (before tilt correction), which may then identify the directions of the primary and secondary magnetizations.
6. Our new, tentative correction method for partially remagnetized rocks indicates a primary latitude of the Lhasa terrane of 21.4°N (19.8°N, 23.1°N) at 52 Ma. This latitude is statistically indistinguishable from published results from large volcanic data sets and inclination shallowing-corrected sediments from the upper Linzizong Group in the Linzhou Basin. This latitude suggests that the Tibetan Himalaya-Lhasa collision began by or slightly before 50 Ma.
7. In addition to inclination shallowing in sedimentary rocks and insufficient averaging of the magnetic field by limited sampling of volcanic rocks, we highlight the role of remagnetization (by secondary hematite growth) as a cause for the wide range of paleolatitude estimates in Tibet. Volcanic rocks with hematite as the remanence carrier can be partially to completely remagnetized. Future paleomagnetic studies should carefully test this potential pitfall.

Acknowledgments

This work was funded by the U.S. NSF Continental Dynamics grant EAR-1008527, “The suturing process: Insight from the India-Asia collision zone,” Netherlands Organization for Scientific Research (NWO) with VIDI grants to G.D.-N. and D.J.J.v.H., the China Scholarship Council to W.H., the ERC Starting grant 306810 (SINK) to D.J.J.v.H., the Marie Curie CIG HIRESDAT, the Alexander von Humboldt foundation of Higher Education and Research and the Chinese Ministry of Education. We thank Maxim Kosnoperov for the laboratory assistance and Liao Chang, Wout Krijgsman, and Cor Langereis for the discussions. Baochun Huang is also thanked for sharing the raw data of their previous paleomagnetic study in the Nanmulin Basin. We are grateful to Kenneth P. Kodama, John Geissman, R. Douglas Elmore, an anonymous reviewer, and the Associate Editor for their constructive comments and suggestions. Data to support this article are available in Tables S1–S8 in the supporting information.

References

Edel, J., and J. Schneider (1995), The Late Carboniferous to Early Triassic geodynamic evolution of Variscan Europe in the light of magnetic overprints in Early Permian rhyolites from the northern Vosges (France) and central Black Forest (Germany), Geophys. J. Int., 122(3), 858–876.

Journal of Geophysical Research: Solid Earth
10.1002/2014JB011599

Parcerisa, D., C. Franke, C. Fabrega, K. Yao, and M. Thiry (2013), Implications from paleomagnetic age constraints and petrology analyses on the reconstruction of the Triassic paleosurface in Europe examples from Catalonia and the Polish Sudetes, paper presented at AGU Fall Meeting 2013.

Sun, Z., W. Jiang, H. Li, J. Pei, and Z. Zhu (2010), New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block: Tectonic implications for the collision of India and Asia, Tectonophysics, 490, 257–266.

Team of Regional Geological Survey of the Bureau of Geology and Mineral Resources of Tibet Autonomous Region (1990), Geological Map of Tibet, Scale 1:500,000.

